Reduction of types

This commit is contained in:
Javier Arigita 2020-04-18 09:44:15 +02:00
parent b3094aa50e
commit ade012a2c7
4 changed files with 81 additions and 69 deletions

View File

@ -610,6 +610,7 @@
#define D_CMND_TEMPRAMPUPPIACCERRSET "TempRampupPiAccErrSet"
#define D_CMND_TIMEPIPROPORTREAD "TimePiProportRead"
#define D_CMND_TIMEPIINTEGRREAD "TimePiIntegrRead"
#define D_CMND_TIMESENSLOSTSET "TimeSensLostSet"
// Commands xsns_02_analog.ino
#define D_CMND_ADCPARAM "AdcParam"

View File

@ -664,20 +664,20 @@
#define HEATING_RELAY_NUMBER 1 // Default output relay number
#define HEATING_SWITCH_NUMBER 1 // Default input switch number
#define HEATING_TIME_ALLOW_RAMPUP 18000 // Default time in seconds after last target update to allow ramp-up controller phase
#define HEATING_TIME_RAMPUP_MAX 57600 // Default time maximum ramp-up controller duration
#define HEATING_TIME_RAMPUP_CYCLE 1800 // Default time ramp-up cycle
#define HEAT_TIME_SENS_LOST 1800 // Default target temperature in seconds
#define HEATING_TIME_ALLOW_RAMPUP 300 // Default time in seconds after last target update to allow ramp-up controller phase in minutes
#define HEATING_TIME_RAMPUP_MAX 960 // Default time maximum ramp-up controller duration in minutes
#define HEATING_TIME_RAMPUP_CYCLE 1800 // Default time ramp-up cycle in seconds
#define HEAT_TIME_SENS_LOST 30 // Maximum time w/o sensor update to set it as lost in minutes
#define HEAT_TEMP_SENS_NUMBER 1 // Default temperature sensor number
#define HEAT_STATE_EMERGENCY false // Default state for heating emergency
#define HEAT_POWER_MAX 60 // Default maximum output power in Watt
#define HEAT_TIME_MANUAL_TO_AUTO 3600 // Default time without input switch active to change from manual to automatic in seconds
#define HEAT_TIME_ON_LIMIT 7200 // Default maximum time with output active in seconds
#define HEAT_TIME_MANUAL_TO_AUTO 60 // Default time without input switch active to change from manual to automatic in minutes
#define HEAT_TIME_ON_LIMIT 120 // Default maximum time with output active in minutes
#define HEAT_TIME_RESET 12000 // Default reset time of the PI controller in seconds
#define HEAT_TIME_PI_CYCLE 1800 // Default cycle time for the heating controller in seconds
#define HEAT_TIME_MAX_ACTION 1200 // Default maximum heating time per cycle in seconds
#define HEAT_TIME_MIN_ACTION 240 // Default minimum heating time per cycle in seconds
#define HEAT_TIME_MIN_TURNOFF_ACTION 180 // Default minimum turnoff time in seconds, below it the heating will be held on
#define HEAT_TIME_PI_CYCLE 30 // Default cycle time for the heating controller in minutes
#define HEAT_TIME_MAX_ACTION 20 // Default maximum heating time per cycle in minutes
#define HEAT_TIME_MIN_ACTION 4 // Default minimum heating time per cycle in minutes
#define HEAT_TIME_MIN_TURNOFF_ACTION 3 // Default minimum turnoff time in minutes, below it the heating will be held on
#define HEAT_PROP_BAND 4 // Default proportional band of the PI controller in degrees celsius
#define HEAT_TEMP_RESET_ANTI_WINDUP 8 // Default range where reset antiwindup is disabled, in tenths of degrees celsius
#define HEAT_TEMP_HYSTERESIS 1 // Default range hysteresis for temperature PI controller, in tenths of degrees celsius

View File

@ -526,7 +526,7 @@ struct SYSCFG {
uint16_t pms_wake_interval; // F34
uint8_t config_version; // F36
uint8_t free_f37[129]; // F37 - Decrement if adding new Setting variables just above and below
uint8_t free_f37[129]; // F37 - Decrement if adding new Setting variables just above and below
// Only 32 bit boundary variables below
uint16_t pulse_counter_debounce_low; // FB8

View File

@ -70,7 +70,7 @@ const char kHeatingCommands[] PROGMEM = "|" D_CMND_HEATINGMODESET "|" D_CMND_TEM
D_CMND_PROPBANDSET "|" D_CMND_TIMERESETSET "|" D_CMND_TIMEPICYCLESET "|" D_CMND_TEMPANTIWINDUPRESETSET "|"
D_CMND_TEMPHYSTSET "|" D_CMND_TIMEMAXACTIONSET "|" D_CMND_TIMEMINACTIONSET "|" D_CMND_TIMEMINTURNOFFACTIONSET "|"
D_CMND_TEMPRUPDELTINSET "|" D_CMND_TEMPRUPDELTOUTSET "|" D_CMND_TIMERAMPUPMAXSET "|" D_CMND_TIMERAMPUPCYCLESET "|"
D_CMND_TEMPRAMPUPPIACCERRSET "|" D_CMND_TIMEPIPROPORTREAD "|" D_CMND_TIMEPIINTEGRREAD;
D_CMND_TEMPRAMPUPPIACCERRSET "|" D_CMND_TIMEPIPROPORTREAD "|" D_CMND_TIMEPIINTEGRREAD "|" D_CMND_TIMESENSLOSTSET;
void (* const HeatingCommand[])(void) PROGMEM = {
&CmndHeatingModeSet, &CmndTempFrostProtectSet, &CmndControllerModeSet, &CmndInputSwitchSet, &CmndOutputRelaySet,
@ -80,7 +80,7 @@ void (* const HeatingCommand[])(void) PROGMEM = {
&CmndTimePiCycleSet, &CmndTempAntiWindupResetSet, &CmndTempHystSet, &CmndTimeMaxActionSet,
&CmndTimeMinActionSet, &CmndTimeMinTurnoffActionSet, &CmndTempRupDeltInSet, &CmndTempRupDeltOutSet,
&CmndTimeRampupMaxSet, &CmndTimeRampupCycleSet, &CmndTempRampupPiAccErrSet, &CmndTimePiProportRead,
&CmndTimePiIntegrRead };
&CmndTimePiIntegrRead, &CmndTimeSensLostSet };
struct HEATING {
uint32_t timestamp_temp_target_update = 0; // Timestamp of latest target value update
@ -128,17 +128,17 @@ struct HEATING {
int16_t temp_rampup_output_off = 0; // Temperature to swith off relay output within the ramp-up controller in tenths of degrees
int16_t temp_rampup_start = 0; // Temperature at start of ramp-up controller in tenths of degrees celsius
int16_t temp_rampup_cycle = 0; // Temperature set at the beginning of each ramp-up cycle in tenths of degrees
uint32_t time_rampup_max = HEATING_TIME_RAMPUP_MAX; // Time maximum ramp-up controller duration
uint32_t time_rampup_cycle = HEATING_TIME_RAMPUP_CYCLE; // Time ramp-up cycle
uint32_t time_allow_rampup = HEATING_TIME_ALLOW_RAMPUP; // Time in seconds after last target update to allow ramp-up controller phase
uint32_t time_sens_lost = HEAT_TIME_SENS_LOST; // Maximum time w/o sensor update to set it as lost
uint32_t time_manual_to_auto = HEAT_TIME_MANUAL_TO_AUTO; // Time without input switch active to change from manual to automatic in seconds
uint32_t time_on_limit = HEAT_TIME_ON_LIMIT; // Maximum time with output active in seconds
uint16_t time_rampup_max = HEATING_TIME_RAMPUP_MAX; // Time maximum ramp-up controller duration in minutes
uint16_t time_rampup_cycle = HEATING_TIME_RAMPUP_CYCLE; // Time ramp-up cycle in seconds
uint16_t time_allow_rampup = HEATING_TIME_ALLOW_RAMPUP; // Time in minutes after last target update to allow ramp-up controller phase
uint16_t time_sens_lost = HEAT_TIME_SENS_LOST; // Maximum time w/o sensor update to set it as lost
uint16_t time_manual_to_auto = HEAT_TIME_MANUAL_TO_AUTO; // Time without input switch active to change from manual to automatic in minutes
uint16_t time_on_limit = HEAT_TIME_ON_LIMIT; // Maximum time with output active in minutes
uint32_t time_reset = HEAT_TIME_RESET; // Reset time of the PI controller in seconds
uint32_t time_pi_cycle = HEAT_TIME_PI_CYCLE; // Cycle time for the heating controller in seconds
uint32_t time_max_action = HEAT_TIME_MAX_ACTION; // Maximum heating time per cycle in seconds
uint32_t time_min_action = HEAT_TIME_MIN_ACTION; // Minimum heating time per cycle in seconds
uint32_t time_min_turnoff_action = HEAT_TIME_MIN_TURNOFF_ACTION; // Minimum turnoff time in seconds, below it the heating will be held on
uint16_t time_pi_cycle = HEAT_TIME_PI_CYCLE; // Cycle time for the heating controller in seconds
uint16_t time_max_action = HEAT_TIME_MAX_ACTION; // Maximum heating time per cycle in minutes
uint16_t time_min_action = HEAT_TIME_MIN_ACTION; // Minimum heating time per cycle in minutes
uint16_t time_min_turnoff_action = HEAT_TIME_MIN_TURNOFF_ACTION; // Minimum turnoff time in minutes, below it the heating will be held on
uint8_t val_prop_band = HEAT_PROP_BAND; // Proportional band of the PI controller in degrees celsius
uint8_t temp_reset_anti_windup = HEAT_TEMP_RESET_ANTI_WINDUP; // Range where reset antiwindup is disabled, in tenths of degrees celsius
int8_t temp_hysteresis = HEAT_TEMP_HYSTERESIS; // Range hysteresis for temperature PI controller, in tenths of degrees celsius
@ -198,7 +198,7 @@ uint8_t HeatingSwitchStatus(uint8_t input_switch)
void HeatingSignalProcessingSlow()
{
if ((uptime - Heating.timestamp_temp_measured_update) > Heating.time_sens_lost) { // Check if sensor alive
if ((uptime - Heating.timestamp_temp_measured_update) > ((uint32_t)Heating.time_sens_lost * 60)) { // Check if sensor alive
Heating.status.sensor_alive = IFACE_OFF;
Heating.temp_measured_gradient = 0;
Heating.temp_measured = 0;
@ -245,7 +245,7 @@ void HeatingHybridCtrPhase()
// AND temp target has changed
// AND temp target - target actual bigger than threshold
// then go to ramp-up
if (((uptime - Heating.timestamp_output_off) > Heating.time_allow_rampup)
if (((uptime - Heating.timestamp_output_off) > (60 * (uint32_t)Heating.time_allow_rampup))
&& (Heating.temp_target_level != Heating.temp_target_level_ctr)
&&((Heating.temp_target_level - Heating.temp_measured) > Heating.temp_rampup_delta_in)) {
Heating.status.phase_hybrid_ctr = CTR_HYBRID_RAMP_UP;
@ -283,7 +283,7 @@ bool HeatStateManualToAuto()
// AND no switch input action (time in current state) bigger than a pre-defined time
// then go to automatic
if ((HeatingSwitchStatus(Heating.input_switch_number) == 0)
&& ((uptime - Heating.timestamp_input_on) > Heating.time_manual_to_auto)) {
&& ((uptime - Heating.timestamp_input_on) > ((uint32_t)Heating.time_manual_to_auto * 60))) {
change_state = true;
}
return change_state;
@ -363,26 +363,26 @@ void HeatingCalculatePI()
// Kp = 100/PI.propBand. PI.propBand(Xp) = Proportional range (4K in 4K/200 controller)
Heating.kP_pi = 100 / (uint16_t)(Heating.val_prop_band);
// Calculate proportional
Heating.time_proportional_pi = ((int32_t)(Heating.temp_pi_error * (int16_t)Heating.kP_pi) * Heating.time_pi_cycle) / 1000;
Heating.time_proportional_pi = ((int32_t)(Heating.temp_pi_error * (int16_t)Heating.kP_pi) * ((uint32_t)Heating.time_pi_cycle * 60)) / 1000;
// Minimum proportional action limiter
// If proportional action is less than the minimum action time
// AND proportional > 0
// then adjust to minimum value
if ((Heating.time_proportional_pi < abs(Heating.time_min_action))
if ((Heating.time_proportional_pi < abs(((uint32_t)Heating.time_min_action * 60)))
&& (Heating.time_proportional_pi > 0)) {
Heating.time_proportional_pi = Heating.time_min_action;
Heating.time_proportional_pi = ((uint32_t)Heating.time_min_action * 60);
}
if (Heating.time_proportional_pi < 0) {
Heating.time_proportional_pi = 0;
}
else if (Heating.time_proportional_pi > Heating.time_pi_cycle) {
Heating.time_proportional_pi = Heating.time_pi_cycle;
else if (Heating.time_proportional_pi > ((uint32_t)Heating.time_pi_cycle * 60)) {
Heating.time_proportional_pi = ((uint32_t)Heating.time_pi_cycle * 60);
}
// Calculate integral
Heating.kI_pi = (uint16_t)(((float)Heating.kP_pi * ((float)Heating.time_pi_cycle / (float)Heating.time_reset)) * 100);
Heating.kI_pi = (uint16_t)(((float)Heating.kP_pi * ((float)((uint32_t)Heating.time_pi_cycle * 60) / (float)Heating.time_reset)) * 100);
// Reset of antiwindup
// If error does not lay within the integrator scope range, do not use the integral
@ -430,13 +430,13 @@ void HeatingCalculatePI()
}
// Integral calculation
Heating.time_integral_pi = ((((int32_t)Heating.temp_pi_accum_error * (int32_t)Heating.kI_pi) / 100) * (int32_t)(Heating.time_pi_cycle)) / 1000;
Heating.time_integral_pi = ((((int32_t)Heating.temp_pi_accum_error * (int32_t)Heating.kI_pi) / 100) * (int32_t)((uint32_t)Heating.time_pi_cycle * 60)) / 1000;
// Antiwindup of the integrator
// If integral calculation is bigger than cycle time, adjust result
// to the cycle time and error will not be cummulated]]
if (Heating.time_integral_pi > Heating.time_pi_cycle) {
Heating.time_integral_pi = Heating.time_pi_cycle;
if (Heating.time_integral_pi > ((uint32_t)Heating.time_pi_cycle * 60)) {
Heating.time_integral_pi = ((uint32_t)Heating.time_pi_cycle * 60);
}
}
@ -446,9 +446,9 @@ void HeatingCalculatePI()
// Antiwindup of the output
// If result is bigger than cycle time, the result will be adjusted
// to the cylce time minus safety time and error will not be cummulated]]
if (Heating.time_total_pi > Heating.time_pi_cycle) {
if (Heating.time_total_pi > ((uint32_t)Heating.time_pi_cycle * 60)) {
// Limit to cycle time //at least switch down a minimum time
Heating.time_total_pi = Heating.time_pi_cycle;
Heating.time_total_pi = ((uint32_t)Heating.time_pi_cycle * 60);
}
else if (Heating.time_total_pi < 0) {
Heating.time_total_pi = 0;
@ -475,24 +475,24 @@ void HeatingCalculatePI()
// Minimum action limiter
// If result is less than the minimum action time, adjust to minimum value]]
if ((Heating.time_total_pi <= abs(Heating.time_min_action))
if ((Heating.time_total_pi <= abs(((uint32_t)Heating.time_min_action * 60)))
&& (Heating.time_total_pi != 0)) {
Heating.time_total_pi = Heating.time_min_action;
Heating.time_total_pi = ((uint32_t)Heating.time_min_action * 60);
}
// Maximum action limiter
// If result is more than the maximum action time, adjust to maximum value]]
else if (Heating.time_total_pi > abs(Heating.time_max_action)) {
Heating.time_total_pi = Heating.time_max_action;
else if (Heating.time_total_pi > abs(((uint32_t)Heating.time_max_action * 60))) {
Heating.time_total_pi = ((uint32_t)Heating.time_max_action * 60);
}
// If switched off less time than safety time, do not switch off
else if (Heating.time_total_pi > (Heating.time_pi_cycle - Heating.time_min_turnoff_action)) {
Heating.time_total_pi = Heating.time_pi_cycle;
else if (Heating.time_total_pi > (((uint32_t)Heating.time_pi_cycle * 60) - ((uint32_t)Heating.time_min_turnoff_action * 60))) {
Heating.time_total_pi = ((uint32_t)Heating.time_pi_cycle * 60);
}
// Adjust output switch point
Heating.time_pi_changepoint = uptime + Heating.time_total_pi;
// Adjust next cycle point
Heating.time_pi_checkpoint = uptime + Heating.time_pi_cycle;
Heating.time_pi_checkpoint = uptime + ((uint32_t)Heating.time_pi_cycle * 60);
}
void HeatingWorkAutomaticPI()
@ -538,7 +538,7 @@ void HeatingWorkAutomaticRampUp()
// If time in ramp-up < max time
// AND temperature measured < target
if ((time_in_rampup <= Heating.time_rampup_max)
if ((time_in_rampup <= (60 * (uint32_t)Heating.time_rampup_max))
&& (Heating.temp_measured < Heating.temp_target_level)) {
// DEADTIME point reached
// If temperature measured minus temperature at start of ramp-up >= threshold
@ -557,10 +557,10 @@ void HeatingWorkAutomaticRampUp()
}
// Calculate gradient since start of ramp-up (considering deadtime) in thousandths of º/hour
Heating.temp_rampup_meas_gradient = (int32_t)((360000 * (int32_t)temp_delta_rampup) / (int32_t)time_in_rampup);
Heating.time_rampup_nextcycle = uptime + Heating.time_rampup_cycle;
Heating.time_rampup_nextcycle = uptime + (uint32_t)Heating.time_rampup_cycle;
// Set auxiliary variables
Heating.temp_rampup_cycle = Heating.temp_measured;
Heating.time_rampup_output_off = uptime + Heating.time_rampup_max;
Heating.time_rampup_output_off = uptime + (60 * (uint32_t)Heating.time_rampup_max);
Heating.temp_rampup_output_off = Heating.temp_target_level_ctr;
}
// Gradient calculation every time_rampup_cycle
@ -568,7 +568,7 @@ void HeatingWorkAutomaticRampUp()
// Calculate temp. gradient in º/hour and set again time_rampup_nextcycle and temp_rampup_cycle
// temp_rampup_meas_gradient = ((3600 * temp_delta_rampup) / (os.time() - time_rampup_nextcycle))
temp_delta_rampup = Heating.temp_measured - Heating.temp_rampup_cycle;
uint32_t time_total_rampup = Heating.time_rampup_cycle * Heating.counter_rampup_cycles;
uint32_t time_total_rampup = (uint32_t)Heating.time_rampup_cycle * Heating.counter_rampup_cycles;
// Translate into gradient per hour (thousandths of ° per hour)
Heating.temp_rampup_meas_gradient = int32_t((360000 * (int32_t)temp_delta_rampup) / (int32_t)time_total_rampup);
if (Heating.temp_rampup_meas_gradient > 0) {
@ -584,7 +584,7 @@ void HeatingWorkAutomaticRampUp()
// Heating.temp_rampup_output_off = (int16_t)(((float)(temp_delta_rampup) / (float)(time_total_rampup * Heating.counter_rampup_cycles)) * (float)(Heating.time_rampup_output_off - (uptime - (time_total_rampup)))) + Heating.temp_rampup_cycle;
Heating.temp_rampup_output_off = (int16_t)(((float)temp_delta_rampup * (float)(Heating.time_rampup_output_off - (uptime - (time_total_rampup)))) / (float)(time_total_rampup * Heating.counter_rampup_cycles)) + Heating.temp_rampup_cycle;
// Set auxiliary variables
Heating.time_rampup_nextcycle = uptime + Heating.time_rampup_cycle;
Heating.time_rampup_nextcycle = uptime + (uint32_t)Heating.time_rampup_cycle;
Heating.temp_rampup_cycle = Heating.temp_measured;
// Reset period counter
Heating.counter_rampup_cycles = 1;
@ -593,9 +593,9 @@ void HeatingWorkAutomaticRampUp()
// Increase the period counter
Heating.counter_rampup_cycles++;
// Set another period
Heating.time_rampup_nextcycle = uptime + Heating.time_rampup_cycle;
Heating.time_rampup_nextcycle = uptime + (uint32_t)Heating.time_rampup_cycle;
// Reset time_rampup_output_off and temp_rampup_output_off
Heating.time_rampup_output_off = uptime + Heating.time_rampup_max - time_in_rampup;
Heating.time_rampup_output_off = uptime + (60 * (uint32_t)Heating.time_rampup_max) - time_in_rampup;
Heating.temp_rampup_output_off = Heating.temp_target_level_ctr;
}
// Set time to get out of calibration
@ -787,10 +787,10 @@ void CmndTimeAllowRampupSet(void)
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value < 86400)) {
Heating.time_allow_rampup = value;
Heating.time_allow_rampup = (uint16_t)(value / 60);
}
}
ResponseCmndNumber((int)Heating.time_allow_rampup);
ResponseCmndNumber((int)((uint32_t)Heating.time_allow_rampup * 60));
}
void CmndTempMeasuredSet(void)
@ -974,10 +974,10 @@ void CmndTimeManualToAutoSet(void)
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Heating.time_manual_to_auto = value;
Heating.time_manual_to_auto = (uint16_t)(value / 60);
}
}
ResponseCmndNumber((int)Heating.time_manual_to_auto);
ResponseCmndNumber((int)((uint32_t)Heating.time_manual_to_auto * 60));
}
void CmndTimeOnLimitSet(void)
@ -985,10 +985,10 @@ void CmndTimeOnLimitSet(void)
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Heating.time_on_limit = value;
Heating.time_on_limit = (uint16_t)(value / 60);
}
}
ResponseCmndNumber((int)Heating.time_on_limit);
ResponseCmndNumber((int)((uint32_t)Heating.time_on_limit * 60));
}
void CmndPropBandSet(void)
@ -1018,10 +1018,10 @@ void CmndTimePiCycleSet(void)
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Heating.time_pi_cycle = value;
Heating.time_pi_cycle = (uint16_t)(value / 60);
}
}
ResponseCmndNumber((int)Heating.time_pi_cycle);
ResponseCmndNumber((int)((uint32_t)Heating.time_pi_cycle * 60));
}
void CmndTempAntiWindupResetSet(void)
@ -1051,10 +1051,10 @@ void CmndTimeMaxActionSet(void)
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Heating.time_max_action = value;
Heating.time_max_action = (uint16_t)(value / 60);
}
}
ResponseCmndNumber((int)Heating.time_max_action);
ResponseCmndNumber((int)((uint32_t)Heating.time_max_action * 60));
}
void CmndTimeMinActionSet(void)
@ -1062,10 +1062,21 @@ void CmndTimeMinActionSet(void)
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Heating.time_min_action = value;
Heating.time_min_action = (uint16_t)(value / 60);
}
}
ResponseCmndNumber((int)Heating.time_min_action);
ResponseCmndNumber((int)((uint32_t)Heating.time_min_action * 60));
}
void CmndTimeSensLostSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Heating.time_sens_lost = (uint16_t)(value / 60);
}
}
ResponseCmndNumber((int)((uint32_t)Heating.time_sens_lost * 60));
}
void CmndTimeMinTurnoffActionSet(void)
@ -1073,10 +1084,10 @@ void CmndTimeMinTurnoffActionSet(void)
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Heating.time_min_turnoff_action = value;
Heating.time_min_turnoff_action = (uint16_t)(value / 60);
}
}
ResponseCmndNumber((int)Heating.time_min_turnoff_action);
ResponseCmndNumber((int)((uint32_t)Heating.time_min_turnoff_action * 60));
}
void CmndTempRupDeltInSet(void)
@ -1106,18 +1117,18 @@ void CmndTimeRampupMaxSet(void)
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Heating.time_rampup_max = value;
Heating.time_rampup_max = (uint16_t)(value / 60);
}
}
ResponseCmndNumber((int)Heating.time_rampup_max);
ResponseCmndNumber((int)(((uint32_t)Heating.time_rampup_max) * 60));
}
void CmndTimeRampupCycleSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Heating.time_rampup_cycle = value;
if ((value >= 0) && (value <= 54000)) {
Heating.time_rampup_cycle = (uint16_t)value;
}
}
ResponseCmndNumber((int)Heating.time_rampup_cycle);