New driver created for heating control. I have created initially this as a LUA script running in Domoticz on a Raspberry Pi to control floor heating valves using Qubino relays. I have ported this to a Tasmota driver embedding the functionality in the relays. This driver has been successfully tested with a shelly 1PM. The controller offers 3 controlling strategies (Hybrid, Rampup and PI) as well as time planning (3 diff. temp. each weekday).

This commit is contained in:
Javier Arigita 2020-04-17 22:52:06 +02:00
parent ba0a2ff2eb
commit b3094aa50e
3 changed files with 146 additions and 117 deletions

View File

@ -577,7 +577,7 @@
#define D_CMND_PING "Ping"
#define D_JSON_PING "Ping"
// Commands xdrv_90_heating.ino
// Commands xdrv_39_heating.ino
#define D_CMND_HEATINGMODESET "HeatingModeSet"
#define D_CMND_TEMPFROSTPROTECTSET "TempFrostProtectSet"
#define D_CMND_CONTROLLERMODESET "ControllerModeSet"

View File

@ -687,6 +687,7 @@
#define HEATING_TEMP_PI_RAMPUP_ACC_E 20 // Default accumulated error when switching from ramp-up controller to PI
#define HEATING_ENERGY_OUTPUT_MAX 10 // Default maximum allowed energy output for heating valve in Watts
#define HEATING_TIME_OUTPUT_DELAY 180 // Default output delay between state change and real actuation event (f.i. valve open/closed)
#define HEATING_TEMP_INIT 180 // Default init target temperature for the heating controller
// -- End of general directives -------------------

View File

@ -21,6 +21,8 @@ enum HeatingModes { HEAT_OFF, HEAT_AUTOMATIC_OP, HEAT_MANUAL_OP, HEAT_TIME_PLAN
enum ControllerModes { CTR_HYBRID, CTR_PI, CTR_RAMP_UP };
enum ControllerHybridPhases { CTR_HYBRID_RAMP_UP, CTR_HYBRID_PI };
enum InterfaceStates { IFACE_OFF, IFACE_ON };
enum CtrCycleStates { CYCLE_OFF, CYCLE_ON };
enum EmergencyStates { EMERGENCY_OFF, EMERGENCY_ON };
enum HeatingSupportedInputSwitches {
HEATING_INPUT_NONE,
HEATING_INPUT_SWT1 = 1, // Buttons
@ -40,6 +42,26 @@ enum HeatingSupportedOutputRelays {
HEATING_OUTPUT_REL8
};
typedef union {
uint16_t data;
struct {
uint16_t heating_mode : 2; // Operation mode of the heating system
uint16_t controller_mode : 2; // Operation mode of the heating controller
uint16_t sensor_alive : 1; // Flag stating if temperature sensor is alive (0 = inactive, 1 = active)
uint16_t command_output : 1; // Flag stating state to save the command to the output (0 = inactive, 1 = active)
uint16_t phase_hybrid_ctr : 1; // Phase of the hybrid controller (Ramp-up or PI)
uint16_t status_output : 1; // Status of the output switch
uint16_t status_cycle_active : 1; // Status showing if cycle is active (Output ON) or not (Output OFF)
uint16_t state_emergency : 1; // State for heating emergency
uint16_t spare0 : 1;
uint16_t spare1 : 1;
uint16_t spare2 : 1;
uint16_t spare3 : 1;
uint16_t spare4 : 1;
uint16_t spare5 : 1;
};
} HeatingBitfield;
const char kHeatingCommands[] PROGMEM = "|" D_CMND_HEATINGMODESET "|" D_CMND_TEMPFROSTPROTECTSET "|"
D_CMND_CONTROLLERMODESET "|" D_CMND_INPUTSWITCHSET "|" D_CMND_OUTPUTRELAYSET "|" D_CMND_TIMEALLOWRAMPUPSET "|"
D_CMND_TEMPMEASUREDSET "|" D_CMND_TEMPTARGETSET "|" D_CMND_TIMEPLANSET "|" D_CMND_TEMPTARGETREAD "|"
@ -60,81 +82,71 @@ void (* const HeatingCommand[])(void) PROGMEM = {
&CmndTimeRampupMaxSet, &CmndTimeRampupCycleSet, &CmndTempRampupPiAccErrSet, &CmndTimePiProportRead,
&CmndTimePiIntegrRead };
const char DOMOTICZ_MES[] PROGMEM = "{\"idx\":%d,\"nvalue\":%d,\"svalue\":\"%s\"}";
struct HEATING {
uint32_t counter_seconds = 0; // Counter incremented every second
uint8_t heating_mode = HEAT_OFF; // Operation mode of the heating system
uint8_t controller_mode = CTR_HYBRID; // Operation mode of the heating controller
bool sensor_alive = false; // Bool stating if temperature sensor is alive
bool command_output = false; // Bool stating state to save the command to the output (true = active, false = inactive)
uint8_t phase_hybrid_ctr = CTR_HYBRID_PI; // Phase of the hybrid controller (Ramp-up or PI)
uint8_t status_output = IFACE_OFF; // Status of the output switch
uint16_t temp_target_level = 180; // Target level of the heating in tenths of degrees
uint16_t temp_target_level_ctr = 180; // Target level set for the controller
int16_t temp_measured = 0; // Temperature measurement received from sensor in tenths of degrees
uint32_t timestamp_temp_target_update = 0; // Timestamp of latest target value update
uint32_t timestamp_temp_measured_update = 0; // Timestamp of latest measurement value update
uint32_t timestamp_temp_meas_change_update = 0; // Timestamp of latest measurement value change (> or < to previous)
uint32_t timestamp_output_on = 0; // Timestamp of latest heating output On state
uint32_t timestamp_output_off = 0; // Timestamp of latest heating output Off state
uint32_t timestamp_input_on = 0; // Timestamp of latest input On state
uint32_t time_heating_total = 0; // Time heating on within a specific timeframe
uint32_t time_pi_checkpoint = 0; // Time to finalize the pi control cycle
uint32_t time_pi_changepoint = 0; // Time until switching off output within a pi control cycle
uint32_t time_rampup_checkpoint = 0; // Time to switch from ramp-up controller mode to PI
uint32_t time_rampup_output_off = 0; // Time to switch off relay output within the ramp-up controller
uint32_t timestamp_rampup_start = 0; // Timestamp where the ramp-up controller mode has been started
uint32_t time_rampup_deadtime = 0; // Time constant of the heating system (step response time)
uint32_t time_rampup_nextcycle = 0; // Time where the ramp-up controller shall start the next cycle
uint32_t counter_rampup_cycles = 0; // Counter of ramp-up cycles
int32_t temp_measured_gradient = 0; // Temperature measured gradient from sensor in thousandths of degrees per hour
int32_t temp_rampup_meas_gradient = 0; // Temperature measured gradient from sensor in thousandths of degrees per hour calculated during ramp-up
int16_t temp_rampup_output_off = 0; // Temperature to swith off relay output within the ramp-up controller in tenths of degrees
int16_t temp_rampup_start = 0; // Temperature at start of ramp-up controller in tenths of degrees celsius
int16_t temp_rampup_cycle = 0; // Temperature set at the beginning of each ramp-up cycle in tenths of degrees
int16_t temp_pi_accum_error = 0; // Temperature accumulated error for the PI controller in tenths of degrees
int16_t temp_pi_error = 0; // Temperature error for the PI controller in tenths of degrees
int32_t time_proportional_pi; // Time proportional part of the PI controller
int32_t time_integral_pi; // Time integral part of the PI controller
int32_t time_total_pi; // Time total (proportional + integral) of the PI controller
uint16_t kP_pi = 0; // kP value for the PI controller
uint16_t kI_pi = 0; // kP value for the PI controller multiplied by 100
uint16_t heating_plan[7][6] = { // Heating plan for the week (3 times/temperatures per day in tenths of degrees)
{0,0,0,0,0,0}, // Monday, format {time/temp, time/temp, time/temp}
{0,0,0,0,0,0}, // Tuesday, format {time/temp, time/temp, time/temp}
{0,0,0,0,0,0}, // Wednesday, format {time/temp, time/temp, time/temp}
{0,0,0,0,0,0}, // Thursday, format {time/temp, time/temp, time/temp}
{0,0,0,0,0,0}, // Friday, format {time/temp, time/temp, time/temp}
{0,0,0,0,0,0}, // Saturday, format {time/temp, time/temp, time/temp}
{0,0,0,0,0,0} // Sunday, format {time/temp, time/temp, time/temp}
uint32_t timestamp_temp_target_update = 0; // Timestamp of latest target value update
uint32_t timestamp_temp_measured_update = 0; // Timestamp of latest measurement value update
uint32_t timestamp_temp_meas_change_update = 0; // Timestamp of latest measurement value change (> or < to previous)
uint32_t timestamp_output_off = 0; // Timestamp of latest heating output Off state
uint32_t timestamp_input_on = 0; // Timestamp of latest input On state
uint32_t time_heating_total = 0; // Time heating on within a specific timeframe
uint32_t time_pi_checkpoint = 0; // Time to finalize the pi control cycle
uint32_t time_pi_changepoint = 0; // Time until switching off output within a pi control cycle
int32_t temp_measured_gradient = 0; // Temperature measured gradient from sensor in thousandths of degrees per hour
uint16_t temp_target_level = HEATING_TEMP_INIT; // Target level of the heating in tenths of degrees
uint16_t temp_target_level_ctr = HEATING_TEMP_INIT; // Target level set for the controller
int16_t temp_pi_accum_error = 0; // Temperature accumulated error for the PI controller in tenths of degrees
int16_t temp_pi_error = 0; // Temperature error for the PI controller in tenths of degrees
int32_t time_proportional_pi; // Time proportional part of the PI controller
int32_t time_integral_pi; // Time integral part of the PI controller
int32_t time_total_pi; // Time total (proportional + integral) of the PI controller
uint16_t kP_pi = 0; // kP value for the PI controller
uint16_t kI_pi = 0; // kP value for the PI controller multiplied by 100
uint16_t heating_plan[7][6] = { // Heating plan for the week (3 times/temperatures per day in tenths of degrees)
{0,0,0,0,0,0}, // Monday, format {time/temp, time/temp, time/temp}
{0,0,0,0,0,0}, // Tuesday, format {time/temp, time/temp, time/temp}
{0,0,0,0,0,0}, // Wednesday, format {time/temp, time/temp, time/temp}
{0,0,0,0,0,0}, // Thursday, format {time/temp, time/temp, time/temp}
{0,0,0,0,0,0}, // Friday, format {time/temp, time/temp, time/temp}
{0,0,0,0,0,0}, // Saturday, format {time/temp, time/temp, time/temp}
{0,0,0,0,0,0} // Sunday, format {time/temp, time/temp, time/temp}
};
bool status_cycle_active = false; // Status showing if cycle is active (Output ON) or not (Output OFF)
uint8_t time_output_delay = HEATING_TIME_OUTPUT_DELAY; // Output delay between state change and real actuation event (f.i. valve open/closed)
uint8_t temp_rampup_pi_acc_error = HEATING_TEMP_PI_RAMPUP_ACC_E; // Accumulated error when switching from ramp-up controller to PI
uint8_t temp_rampup_delta_out = HEATING_TEMP_RAMPUP_DELTA_OUT; // Minimum delta temperature to target to get out of the rampup mode, in tenths of degrees celsius
uint8_t temp_rampup_delta_in = HEATING_TEMP_RAMPUP_DELTA_IN; // Minimum delta temperature to target to get into rampup mode, in tenths of degrees celsius
uint32_t time_rampup_max = HEATING_TIME_RAMPUP_MAX; // Time maximum ramp-up controller duration
uint32_t time_rampup_cycle = HEATING_TIME_RAMPUP_CYCLE; // Time ramp-up cycle
uint32_t time_allow_rampup = HEATING_TIME_ALLOW_RAMPUP; // Time in seconds after last target update to allow ramp-up controller phase
uint32_t time_sens_lost = HEAT_TIME_SENS_LOST; // Maximum time w/o sensor update to set it as lost
uint8_t temp_sens_number = HEAT_TEMP_SENS_NUMBER; // Temperature sensor number
bool state_emergency = HEAT_STATE_EMERGENCY; // State for heating emergency
uint8_t output_relay_number = HEATING_RELAY_NUMBER; // Output relay number
uint8_t input_switch_number = HEATING_SWITCH_NUMBER; // Input switch number
uint32_t time_manual_to_auto = HEAT_TIME_MANUAL_TO_AUTO; // Time without input switch active to change from manual to automatic in seconds
uint32_t time_on_limit = HEAT_TIME_ON_LIMIT; // Maximum time with output active in seconds
uint32_t time_reset = HEAT_TIME_RESET; // Reset time of the PI controller in seconds
uint32_t time_pi_cycle = HEAT_TIME_PI_CYCLE; // Cycle time for the heating controller in seconds
uint32_t time_max_action = HEAT_TIME_MAX_ACTION; // Maximum heating time per cycle in seconds
uint32_t time_min_action = HEAT_TIME_MIN_ACTION; // Minimum heating time per cycle in seconds
uint32_t time_min_turnoff_action = HEAT_TIME_MIN_TURNOFF_ACTION; // Minimum turnoff time in seconds, below it the heating will be held on
uint8_t val_prop_band = HEAT_PROP_BAND; // Proportional band of the PI controller in degrees celsius
uint8_t temp_reset_anti_windup = HEAT_TEMP_RESET_ANTI_WINDUP; // Range where reset antiwindup is disabled, in tenths of degrees celsius
int8_t temp_hysteresis = HEAT_TEMP_HYSTERESIS; // Range hysteresis for temperature PI controller, in tenths of degrees celsius
uint8_t temp_frost_protect = HEAT_TEMP_FROST_PROTECT; // Minimum temperature for frost protection, in tenths of degrees celsius
uint16_t power_max = HEAT_POWER_MAX; // Maximum output power in Watt
uint16_t energy_heating_output_max = HEATING_ENERGY_OUTPUT_MAX; // Maximum allowed energy output for heating valve in Watts
int16_t temp_measured = 0; // Temperature measurement received from sensor in tenths of degrees
uint8_t time_output_delay = HEATING_TIME_OUTPUT_DELAY; // Output delay between state change and real actuation event (f.i. valve open/closed)
uint8_t counter_rampup_cycles = 0; // Counter of ramp-up cycles
int32_t temp_rampup_meas_gradient = 0; // Temperature measured gradient from sensor in thousandths of degrees per hour calculated during ramp-up
uint32_t time_rampup_checkpoint = 0; // Time to switch from ramp-up controller mode to PI
uint32_t time_rampup_output_off = 0; // Time to switch off relay output within the ramp-up controller
uint32_t timestamp_rampup_start = 0; // Timestamp where the ramp-up controller mode has been started
uint32_t time_rampup_deadtime = 0; // Time constant of the heating system (step response time)
uint32_t time_rampup_nextcycle = 0; // Time where the ramp-up controller shall start the next cycle
uint8_t output_relay_number = HEATING_RELAY_NUMBER; // Output relay number
uint8_t input_switch_number = HEATING_SWITCH_NUMBER; // Input switch number
uint8_t temp_sens_number = HEAT_TEMP_SENS_NUMBER; // Temperature sensor number
uint8_t temp_rampup_pi_acc_error = HEATING_TEMP_PI_RAMPUP_ACC_E; // Accumulated error when switching from ramp-up controller to PI
uint8_t temp_rampup_delta_out = HEATING_TEMP_RAMPUP_DELTA_OUT; // Minimum delta temperature to target to get out of the rampup mode, in tenths of degrees celsius
uint8_t temp_rampup_delta_in = HEATING_TEMP_RAMPUP_DELTA_IN; // Minimum delta temperature to target to get into rampup mode, in tenths of degrees celsius
int16_t temp_rampup_output_off = 0; // Temperature to swith off relay output within the ramp-up controller in tenths of degrees
int16_t temp_rampup_start = 0; // Temperature at start of ramp-up controller in tenths of degrees celsius
int16_t temp_rampup_cycle = 0; // Temperature set at the beginning of each ramp-up cycle in tenths of degrees
uint32_t time_rampup_max = HEATING_TIME_RAMPUP_MAX; // Time maximum ramp-up controller duration
uint32_t time_rampup_cycle = HEATING_TIME_RAMPUP_CYCLE; // Time ramp-up cycle
uint32_t time_allow_rampup = HEATING_TIME_ALLOW_RAMPUP; // Time in seconds after last target update to allow ramp-up controller phase
uint32_t time_sens_lost = HEAT_TIME_SENS_LOST; // Maximum time w/o sensor update to set it as lost
uint32_t time_manual_to_auto = HEAT_TIME_MANUAL_TO_AUTO; // Time without input switch active to change from manual to automatic in seconds
uint32_t time_on_limit = HEAT_TIME_ON_LIMIT; // Maximum time with output active in seconds
uint32_t time_reset = HEAT_TIME_RESET; // Reset time of the PI controller in seconds
uint32_t time_pi_cycle = HEAT_TIME_PI_CYCLE; // Cycle time for the heating controller in seconds
uint32_t time_max_action = HEAT_TIME_MAX_ACTION; // Maximum heating time per cycle in seconds
uint32_t time_min_action = HEAT_TIME_MIN_ACTION; // Minimum heating time per cycle in seconds
uint32_t time_min_turnoff_action = HEAT_TIME_MIN_TURNOFF_ACTION; // Minimum turnoff time in seconds, below it the heating will be held on
uint8_t val_prop_band = HEAT_PROP_BAND; // Proportional band of the PI controller in degrees celsius
uint8_t temp_reset_anti_windup = HEAT_TEMP_RESET_ANTI_WINDUP; // Range where reset antiwindup is disabled, in tenths of degrees celsius
int8_t temp_hysteresis = HEAT_TEMP_HYSTERESIS; // Range hysteresis for temperature PI controller, in tenths of degrees celsius
uint8_t temp_frost_protect = HEAT_TEMP_FROST_PROTECT; // Minimum temperature for frost protection, in tenths of degrees celsius
uint16_t power_max = HEAT_POWER_MAX; // Maximum output power in Watt
uint16_t energy_heating_output_max = HEATING_ENERGY_OUTPUT_MAX; // Maximum allowed energy output for heating valve in Watts
uint8_t counter_seconds = 0; // Counter incremented every second
HeatingBitfield status; // Bittfield including states as well as several flags
} Heating;
/*********************************************************************************************/
@ -142,6 +154,15 @@ struct HEATING {
void HeatingInit()
{
ExecuteCommandPower(Heating.output_relay_number, POWER_OFF, SRC_HEATING); // Make sure the Output is OFF
// Init Heating.status bittfield:
Heating.status.heating_mode = HEAT_OFF;
Heating.status.controller_mode = CTR_HYBRID;
Heating.status.sensor_alive = IFACE_OFF;
Heating.status.command_output = IFACE_OFF;
Heating.status.phase_hybrid_ctr = CTR_HYBRID_PI;
Heating.status.status_output = IFACE_OFF;
Heating.status.status_cycle_active = CYCLE_OFF;
Heating.status.state_emergency = EMERGENCY_OFF;
}
bool HeatingMinuteCounter()
@ -150,7 +171,8 @@ bool HeatingMinuteCounter()
Heating.counter_seconds++; // increment time
if ((Heating.counter_seconds % 60) == 0) {
result = true;
result = true;
Heating.counter_seconds = 0;
}
return(result);
}
@ -177,7 +199,7 @@ uint8_t HeatingSwitchStatus(uint8_t input_switch)
void HeatingSignalProcessingSlow()
{
if ((uptime - Heating.timestamp_temp_measured_update) > Heating.time_sens_lost) { // Check if sensor alive
Heating.sensor_alive = false;
Heating.status.sensor_alive = IFACE_OFF;
Heating.temp_measured_gradient = 0;
Heating.temp_measured = 0;
}
@ -192,7 +214,7 @@ void HeatingSignalProcessingFast()
void HeatingCtrState()
{
switch (Heating.controller_mode) {
switch (Heating.status.controller_mode) {
case CTR_HYBRID: // Ramp-up phase with gradient control
HeatingHybridCtrPhase();
break;
@ -205,8 +227,8 @@ void HeatingCtrState()
void HeatingHybridCtrPhase()
{
if (Heating.controller_mode == CTR_HYBRID) {
switch (Heating.phase_hybrid_ctr) {
if (Heating.status.controller_mode == CTR_HYBRID) {
switch (Heating.status.phase_hybrid_ctr) {
case CTR_HYBRID_RAMP_UP: // Ramp-up phase with gradient control
// If ramp-up offtime counter has been initalized
// AND ramp-up offtime counter value reached
@ -215,7 +237,7 @@ void HeatingHybridCtrPhase()
// Reset pause period
Heating.time_rampup_checkpoint = 0;
// Set PI controller
Heating.phase_hybrid_ctr = CTR_HYBRID_PI;
Heating.status.phase_hybrid_ctr = CTR_HYBRID_PI;
}
break;
case CTR_HYBRID_PI: // PI controller phase
@ -226,7 +248,7 @@ void HeatingHybridCtrPhase()
if (((uptime - Heating.timestamp_output_off) > Heating.time_allow_rampup)
&& (Heating.temp_target_level != Heating.temp_target_level_ctr)
&&((Heating.temp_target_level - Heating.temp_measured) > Heating.temp_rampup_delta_in)) {
Heating.phase_hybrid_ctr = CTR_HYBRID_RAMP_UP;
Heating.status.phase_hybrid_ctr = CTR_HYBRID_RAMP_UP;
Heating.timestamp_rampup_start = uptime;
Heating.temp_rampup_start = Heating.temp_measured;
Heating.temp_rampup_meas_gradient = 0;
@ -247,7 +269,7 @@ bool HeatStateAutoOrPlanToManual()
// OR temperature sensor is not alive
// then go to manual
if ((HeatingSwitchStatus(Heating.input_switch_number) == 1)
|| (Heating.sensor_alive == false)) {
|| (Heating.status.sensor_alive == IFACE_OFF)) {
change_state = true;
}
return change_state;
@ -272,41 +294,41 @@ bool HeatStateAllToOff()
bool change_state;
// If emergency mode then switch OFF the output inmediately
if (Heating.state_emergency) {
Heating.heating_mode = HEAT_OFF; // Emergency switch to HEAT_OFF
if (Heating.status.state_emergency == EMERGENCY_ON) {
Heating.status.heating_mode = HEAT_OFF; // Emergency switch to HEAT_OFF
}
return change_state;
}
void HeatingState()
{
switch (Heating.heating_mode) {
switch (Heating.status.heating_mode) {
case HEAT_OFF: // State if Off or Emergency
// No change of state possible without external command
break;
case HEAT_AUTOMATIC_OP: // State automatic heating active following to command target temp.
if (HeatStateAllToOff()) {
Heating.heating_mode = HEAT_OFF; // Emergency switch to HEAT_OFF
Heating.status.heating_mode = HEAT_OFF; // Emergency switch to HEAT_OFF
}
if (HeatStateAutoOrPlanToManual()) {
Heating.heating_mode = HEAT_MANUAL_OP; // If sensor not alive change to HEAT_MANUAL_OP
Heating.status.heating_mode = HEAT_MANUAL_OP; // If sensor not alive change to HEAT_MANUAL_OP
}
HeatingCtrState();
break;
case HEAT_MANUAL_OP: // State manual operation following input switch
if (HeatStateAllToOff()) {
Heating.heating_mode = HEAT_OFF; // Emergency switch to HEAT_OFF
Heating.status.heating_mode = HEAT_OFF; // Emergency switch to HEAT_OFF
}
if (HeatStateManualToAuto()) {
Heating.heating_mode = HEAT_AUTOMATIC_OP; // Input switch inactive and timeout reached change to HEAT_AUTOMATIC_OP
Heating.status.heating_mode = HEAT_AUTOMATIC_OP; // Input switch inactive and timeout reached change to HEAT_AUTOMATIC_OP
}
break;
case HEAT_TIME_PLAN: // State automatic heating active following set heating plan
if (HeatStateAllToOff()) {
Heating.heating_mode = HEAT_OFF; // Emergency switch to HEAT_OFF
Heating.status.heating_mode = HEAT_OFF; // Emergency switch to HEAT_OFF
}
if (HeatStateAutoOrPlanToManual()) {
Heating.heating_mode = HEAT_MANUAL_OP; // If sensor not alive change to HEAT_MANUAL_OP
Heating.status.heating_mode = HEAT_MANUAL_OP; // If sensor not alive change to HEAT_MANUAL_OP
}
HeatingCtrState();
break;
@ -320,18 +342,17 @@ void HeatingOutputRelay(bool active)
// AND current output status is OFF
// then switch output to ON
if ((active == true)
&& (Heating.status_output == IFACE_OFF)) {
&& (Heating.status.status_output == IFACE_OFF)) {
ExecuteCommandPower(Heating.output_relay_number, POWER_ON, SRC_HEATING);
Heating.timestamp_output_on = uptime;
Heating.status_output = IFACE_ON;
Heating.status.status_output = IFACE_ON;
}
// If command received to disable output
// AND current output status is ON
// then switch output to OFF
else if ((active == false) && (Heating.status_output == IFACE_ON)) {
else if ((active == false) && (Heating.status.status_output == IFACE_ON)) {
ExecuteCommandPower(Heating.output_relay_number, POWER_OFF, SRC_HEATING);
Heating.timestamp_output_off = uptime;
Heating.status_output = IFACE_OFF;
Heating.status.status_output = IFACE_OFF;
}
}
@ -482,18 +503,18 @@ void HeatingWorkAutomaticPI()
|| (Heating.temp_target_level != Heating.temp_target_level_ctr)
|| ((Heating.temp_measured < Heating.temp_target_level)
&& (Heating.temp_measured_gradient < 0)
&& (Heating.status_cycle_active == false))) {
&& (Heating.status.status_cycle_active == CYCLE_OFF))) {
Heating.temp_target_level_ctr = Heating.temp_target_level;
HeatingCalculatePI();
// Reset cycle active
Heating.status_cycle_active = false;
Heating.status.status_cycle_active = CYCLE_OFF;
}
if (uptime < Heating.time_pi_changepoint) {
Heating.status_cycle_active = true;
Heating.command_output = true;
Heating.status.status_cycle_active = CYCLE_ON;
Heating.status.command_output = IFACE_ON;
}
else {
Heating.command_output = false;
Heating.status.command_output = IFACE_OFF;
}
}
@ -511,7 +532,7 @@ void HeatingWorkAutomaticRampUp()
time_in_rampup = uptime - Heating.timestamp_rampup_start;
temp_delta_rampup = Heating.temp_measured - Heating.temp_rampup_start;
// Init command output status to true
Heating.command_output = true;
Heating.status.command_output = IFACE_ON;
// Update temperature target level for controller
Heating.temp_target_level_ctr = Heating.temp_target_level;
@ -591,10 +612,10 @@ void HeatingWorkAutomaticRampUp()
|| (uptime < Heating.time_rampup_output_off)
|| (Heating.temp_measured < Heating.temp_rampup_output_off)
|| (Heating.temp_rampup_meas_gradient <= 0)) {
Heating.command_output = true;
Heating.status.command_output = IFACE_ON;
}
else {
Heating.command_output = false;
Heating.status.command_output = IFACE_OFF;
}
}
else {
@ -605,15 +626,15 @@ void HeatingWorkAutomaticRampUp()
// Set to now time to get out of calibration
Heating.time_rampup_checkpoint = uptime;
// Switch Off output
Heating.command_output = false;
Heating.status.command_output = IFACE_OFF;
}
}
void HeatingCtrWork()
{
switch (Heating.controller_mode) {
switch (Heating.status.controller_mode) {
case CTR_HYBRID: // Ramp-up phase with gradient control
switch (Heating.phase_hybrid_ctr) {
switch (Heating.status.phase_hybrid_ctr) {
case CTR_HYBRID_RAMP_UP:
HeatingWorkAutomaticRampUp();
break;
@ -660,9 +681,9 @@ void HeatingPlanTempTarget()
void HeatingWork()
{
switch (Heating.heating_mode) {
switch (Heating.status.heating_mode) {
case HEAT_OFF: // State if Off or Emergency
Heating.command_output = false;
Heating.status.command_output = IFACE_OFF;
break;
case HEAT_AUTOMATIC_OP: // State automatic heating active following to command target temp.
HeatingCtrWork();
@ -676,7 +697,14 @@ void HeatingWork()
HeatingCtrWork();
break;
}
HeatingOutputRelay(Heating.command_output);
bool output_command;
if (Heating.status.command_output == IFACE_OFF) {
output_command = false;
}
else {
output_command = true;
}
HeatingOutputRelay(output_command);
}
void HeatingDiagnostics()
@ -702,11 +730,11 @@ void CmndHeatingModeSet(void)
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data));
if ((value >= HEAT_OFF) && (value <= HEAT_TIME_PLAN)) {
Heating.heating_mode = value;
Heating.status.heating_mode = value;
Heating.timestamp_input_on = 0; // Reset last manual switch timer if command set externally
}
}
ResponseCmndNumber((int)Heating.heating_mode);
ResponseCmndNumber((int)Heating.status.heating_mode);
}
void CmndTempFrostProtectSet(void)
@ -725,10 +753,10 @@ void CmndControllerModeSet(void)
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= CTR_RAMP_UP)) {
Heating.controller_mode = value;
Heating.status.controller_mode = value;
}
}
ResponseCmndNumber((int)Heating.controller_mode);
ResponseCmndNumber((int)Heating.status.controller_mode);
}
void CmndInputSwitchSet(void)
@ -780,7 +808,7 @@ void CmndTempMeasuredSet(void)
Heating.timestamp_temp_meas_change_update = timestamp;
}
Heating.timestamp_temp_measured_update = timestamp;
Heating.sensor_alive = true;
Heating.status.sensor_alive = IFACE_ON;
}
}
ResponseCmndFloat(((float)Heating.temp_measured) / 10, 1);
@ -924,10 +952,10 @@ void CmndStateEmergencySet(void)
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 1)) {
Heating.state_emergency = (bool)value;
Heating.status.state_emergency = (uint16_t)value;
}
}
ResponseCmndNumber((int)Heating.state_emergency);
ResponseCmndNumber((int)Heating.status.state_emergency);
}
void CmndPowerMaxSet(void)