mirror of https://github.com/arendst/Tasmota.git
788 lines
28 KiB
C++
788 lines
28 KiB
C++
/*
|
|
xdrv_23_zigbee_2a_devices_impl.ino - zigbee support for Tasmota
|
|
|
|
Copyright (C) 2020 Theo Arends and Stephan Hadinger
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifdef USE_ZIGBEE
|
|
|
|
/*********************************************************************************************\
|
|
* Implementation
|
|
\*********************************************************************************************/
|
|
|
|
//
|
|
// Create a new Z_Device entry in _devices. Only to be called if you are sure that no
|
|
// entry with same shortaddr or longaddr exists.
|
|
//
|
|
Z_Device & Z_Devices::createDeviceEntry(uint16_t shortaddr, uint64_t longaddr) {
|
|
if ((BAD_SHORTADDR == shortaddr) && !longaddr) { return (Z_Device&) device_unk; } // it is not legal to create this entry
|
|
Z_Device device(shortaddr, longaddr);
|
|
|
|
dirty();
|
|
return _devices.addHead(device);
|
|
}
|
|
|
|
void Z_Devices::freeDeviceEntry(Z_Device *device) {
|
|
if (device->manufacturerId) { free(device->manufacturerId); }
|
|
if (device->modelId) { free(device->modelId); }
|
|
if (device->friendlyName) { free(device->friendlyName); }
|
|
free(device);
|
|
}
|
|
|
|
//
|
|
// Scan all devices to find a corresponding shortaddr
|
|
// Looks info device.shortaddr entry
|
|
// In:
|
|
// shortaddr (not BAD_SHORTADDR)
|
|
// Out:
|
|
// reference to device, or to device_unk if not found
|
|
// (use foundDevice() to check if found)
|
|
Z_Device & Z_Devices::findShortAddr(uint16_t shortaddr) {
|
|
for (auto & elem : _devices) {
|
|
if (elem.shortaddr == shortaddr) { return elem; }
|
|
}
|
|
return (Z_Device&) device_unk;
|
|
}
|
|
const Z_Device & Z_Devices::findShortAddr(uint16_t shortaddr) const {
|
|
for (const auto & elem : _devices) {
|
|
if (elem.shortaddr == shortaddr) { return elem; }
|
|
}
|
|
return device_unk;
|
|
}
|
|
//
|
|
// Scan all devices to find a corresponding longaddr
|
|
// Looks info device.longaddr entry
|
|
// In:
|
|
// longaddr (non null)
|
|
// Out:
|
|
// index in _devices of entry, -1 if not found
|
|
//
|
|
Z_Device & Z_Devices::findLongAddr(uint64_t longaddr) {
|
|
if (!longaddr) { return (Z_Device&) device_unk; }
|
|
for (auto &elem : _devices) {
|
|
if (elem.longaddr == longaddr) { return elem; }
|
|
}
|
|
return (Z_Device&) device_unk;
|
|
}
|
|
const Z_Device & Z_Devices::findLongAddr(uint64_t longaddr) const {
|
|
if (!longaddr) { return device_unk; }
|
|
for (const auto &elem : _devices) {
|
|
if (elem.longaddr == longaddr) { return elem; }
|
|
}
|
|
return device_unk;
|
|
}
|
|
//
|
|
// Scan all devices to find a corresponding friendlyNme
|
|
// Looks info device.friendlyName entry
|
|
// In:
|
|
// friendlyName (null terminated, should not be empty)
|
|
// Out:
|
|
// index in _devices of entry, -1 if not found
|
|
//
|
|
int32_t Z_Devices::findFriendlyName(const char * name) const {
|
|
if (!name) { return -1; } // if pointer is null
|
|
size_t name_len = strlen(name);
|
|
int32_t found = 0;
|
|
if (name_len) {
|
|
for (auto &elem : _devices) {
|
|
if (elem.friendlyName) {
|
|
if (strcasecmp(elem.friendlyName, name) == 0) { return found; }
|
|
}
|
|
found++;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
uint16_t Z_Devices::isKnownLongAddr(uint64_t longaddr) const {
|
|
const Z_Device & device = findLongAddr(longaddr);
|
|
if (foundDevice(device)) {
|
|
return device.shortaddr; // can be zero, if not yet registered
|
|
} else {
|
|
return BAD_SHORTADDR;
|
|
}
|
|
}
|
|
|
|
uint16_t Z_Devices::isKnownIndex(uint32_t index) const {
|
|
if (index < devicesSize()) {
|
|
const Z_Device & device = devicesAt(index);
|
|
return device.shortaddr;
|
|
} else {
|
|
return BAD_SHORTADDR;
|
|
}
|
|
}
|
|
|
|
uint16_t Z_Devices::isKnownFriendlyName(const char * name) const {
|
|
if ((!name) || (0 == strlen(name))) { return BAD_SHORTADDR; } // Error
|
|
int32_t found = findFriendlyName(name);
|
|
if (found >= 0) {
|
|
const Z_Device & device = devicesAt(found);
|
|
return device.shortaddr; // can be zero, if not yet registered
|
|
} else {
|
|
return BAD_SHORTADDR;
|
|
}
|
|
}
|
|
|
|
uint64_t Z_Devices::getDeviceLongAddr(uint16_t shortaddr) const {
|
|
return findShortAddr(shortaddr).longaddr; // if unknown, it reverts to the Unknown device and longaddr is 0x00
|
|
}
|
|
|
|
//
|
|
// We have a seen a shortaddr on the network, get the corresponding device object
|
|
//
|
|
Z_Device & Z_Devices::getShortAddr(uint16_t shortaddr) {
|
|
if (BAD_SHORTADDR == shortaddr) { return (Z_Device&) device_unk; } // this is not legal
|
|
Z_Device & device = findShortAddr(shortaddr);
|
|
if (foundDevice(device)) {
|
|
return device;
|
|
}
|
|
return createDeviceEntry(shortaddr, 0);
|
|
}
|
|
|
|
// find the Device object by its longaddr (unique key if not null)
|
|
Z_Device & Z_Devices::getLongAddr(uint64_t longaddr) {
|
|
if (!longaddr) { return (Z_Device&) device_unk; }
|
|
Z_Device & device = findLongAddr(longaddr);
|
|
if (foundDevice(device)) {
|
|
return device;
|
|
}
|
|
return createDeviceEntry(0, longaddr);
|
|
}
|
|
|
|
// Remove device from list, return true if it was known, false if it was not recorded
|
|
bool Z_Devices::removeDevice(uint16_t shortaddr) {
|
|
Z_Device & device = findShortAddr(shortaddr);
|
|
if (foundDevice(device)) {
|
|
_devices.remove(&device);
|
|
dirty();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//
|
|
// We have just seen a device on the network, update the info based on short/long addr
|
|
// In:
|
|
// shortaddr
|
|
// longaddr (both can't be null at the same time)
|
|
void Z_Devices::updateDevice(uint16_t shortaddr, uint64_t longaddr) {
|
|
Z_Device * s_found = &findShortAddr(shortaddr); // is there already a shortaddr entry
|
|
Z_Device * l_found = &findLongAddr(longaddr); // is there already a longaddr entry
|
|
|
|
if (foundDevice(*s_found) && foundDevice(*l_found)) { // both shortaddr and longaddr are already registered
|
|
if (s_found == l_found) {
|
|
} else { // they don't match
|
|
// the device with longaddr got a new shortaddr
|
|
l_found->shortaddr = shortaddr; // update the shortaddr corresponding to the longaddr
|
|
// erase the previous shortaddr
|
|
freeDeviceEntry(s_found);
|
|
_devices.remove(s_found);
|
|
dirty();
|
|
}
|
|
} else if (foundDevice(*s_found)) {
|
|
// shortaddr already exists but longaddr not
|
|
// add the longaddr to the entry
|
|
s_found->longaddr = longaddr;
|
|
dirty();
|
|
} else if (foundDevice(*l_found)) {
|
|
// longaddr entry exists, update shortaddr
|
|
l_found->shortaddr = shortaddr;
|
|
dirty();
|
|
} else {
|
|
// neither short/lonf addr are found.
|
|
if ((BAD_SHORTADDR != shortaddr) || longaddr) {
|
|
createDeviceEntry(shortaddr, longaddr);
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Clear all endpoints
|
|
//
|
|
void Z_Devices::clearEndpoints(uint16_t shortaddr) {
|
|
Z_Device &device = getShortAddr(shortaddr);
|
|
for (uint32_t i = 0; i < endpoints_max; i++) {
|
|
device.endpoints[i] = 0;
|
|
// no dirty here because it doesn't make sense to store it, does it?
|
|
}
|
|
}
|
|
|
|
//
|
|
// Add an endpoint to a shortaddr
|
|
//
|
|
void Z_Devices::addEndpoint(uint16_t shortaddr, uint8_t endpoint) {
|
|
if (0x00 == endpoint) { return; }
|
|
Z_Device &device = getShortAddr(shortaddr);
|
|
|
|
for (uint32_t i = 0; i < endpoints_max; i++) {
|
|
if (endpoint == device.endpoints[i]) {
|
|
return; // endpoint already there
|
|
}
|
|
if (0 == device.endpoints[i]) {
|
|
device.endpoints[i] = endpoint;
|
|
dirty();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Count the number of known endpoints
|
|
//
|
|
uint32_t Z_Devices::countEndpoints(uint16_t shortaddr) const {
|
|
uint32_t count_ep = 0;
|
|
const Z_Device & device =findShortAddr(shortaddr);
|
|
if (!foundDevice(device)) return 0;
|
|
|
|
for (uint32_t i = 0; i < endpoints_max; i++) {
|
|
if (0 != device.endpoints[i]) {
|
|
count_ep++;
|
|
}
|
|
}
|
|
return count_ep;
|
|
}
|
|
|
|
// Find the first endpoint of the device
|
|
uint8_t Z_Devices::findFirstEndpoint(uint16_t shortaddr) const {
|
|
// When in router of end-device mode, the coordinator was not probed, in this case always talk to endpoint 1
|
|
if (0x0000 == shortaddr) { return 1; }
|
|
return findShortAddr(shortaddr).endpoints[0]; // returns 0x00 if no endpoint
|
|
}
|
|
|
|
void Z_Devices::setStringAttribute(char*& attr, const char * str) {
|
|
if (nullptr == str) { return; } // ignore a null parameter
|
|
size_t str_len = strlen(str);
|
|
|
|
if ((nullptr == attr) && (0 == str_len)) { return; } // if both empty, don't do anything
|
|
if (attr) {
|
|
// we already have a value
|
|
if (strcmp(attr, str) != 0) {
|
|
// new value
|
|
free(attr); // free previous value
|
|
attr = nullptr;
|
|
} else {
|
|
return; // same value, don't change anything
|
|
}
|
|
}
|
|
if (str_len) {
|
|
attr = (char*) malloc(str_len + 1);
|
|
strlcpy(attr, str, str_len + 1);
|
|
}
|
|
dirty();
|
|
}
|
|
|
|
//
|
|
// Sets the ManufId for a device.
|
|
// No action taken if the device does not exist.
|
|
// Inputs:
|
|
// - shortaddr: 16-bits short address of the device. No action taken if the device is unknown
|
|
// - str: string pointer, if nullptr it is considered as empty string
|
|
// Impact:
|
|
// - Any actual change in ManufId (i.e. setting a different value) triggers a `dirty()` and saving to Flash
|
|
//
|
|
void Z_Devices::setManufId(uint16_t shortaddr, const char * str) {
|
|
setStringAttribute(getShortAddr(shortaddr).manufacturerId, str);
|
|
}
|
|
|
|
void Z_Devices::setModelId(uint16_t shortaddr, const char * str) {
|
|
setStringAttribute(getShortAddr(shortaddr).modelId, str);
|
|
}
|
|
|
|
void Z_Devices::setFriendlyName(uint16_t shortaddr, const char * str) {
|
|
setStringAttribute(getShortAddr(shortaddr).friendlyName, str);
|
|
}
|
|
|
|
|
|
void Z_Devices::setReachable(uint16_t shortaddr, bool reachable) {
|
|
getShortAddr(shortaddr).setReachable(reachable);
|
|
}
|
|
|
|
void Z_Devices::setLQI(uint16_t shortaddr, uint8_t lqi) {
|
|
if (shortaddr == localShortAddr) { return; }
|
|
getShortAddr(shortaddr).lqi = lqi;
|
|
}
|
|
|
|
void Z_Devices::setLastSeenNow(uint16_t shortaddr) {
|
|
if (shortaddr == localShortAddr) { return; }
|
|
// Only update time if after 2020-01-01 0000.
|
|
// Fixes issue where zigbee device pings before WiFi/NTP has set utc_time
|
|
// to the correct time, and "last seen" calculations are based on the
|
|
// pre-corrected last_seen time and the since-corrected utc_time.
|
|
if (Rtc.utc_time < 1577836800) { return; }
|
|
getShortAddr(shortaddr).last_seen = Rtc.utc_time;
|
|
}
|
|
|
|
|
|
void Z_Devices::setBatteryPercent(uint16_t shortaddr, uint8_t bp) {
|
|
getShortAddr(shortaddr).batterypercent = bp;
|
|
}
|
|
|
|
// get the next sequance number for the device, or use the global seq number if device is unknown
|
|
uint8_t Z_Devices::getNextSeqNumber(uint16_t shortaddr) {
|
|
Z_Device & device = findShortAddr(shortaddr);
|
|
if (foundDevice(device)) {
|
|
device.seqNumber += 1;
|
|
return device.seqNumber;
|
|
} else {
|
|
_seqNumber += 1;
|
|
return _seqNumber;
|
|
}
|
|
}
|
|
|
|
// General Zigbee device profile support
|
|
void Z_Devices::setLightProfile(uint16_t shortaddr, uint8_t light_profile) {
|
|
Z_Device &device = getShortAddr(shortaddr);
|
|
if (device.setLightChannels(light_profile)) {
|
|
dirty();
|
|
}
|
|
}
|
|
|
|
// Returns the device profile or 0xFF if the device or profile is unknown
|
|
uint8_t Z_Devices::getLightProfile(uint16_t shortaddr) const {
|
|
const Z_Device &device = findShortAddr(shortaddr);
|
|
return device.getLightChannels();
|
|
}
|
|
|
|
int8_t Z_Devices::getHueBulbtype(uint16_t shortaddr) const {
|
|
int8_t light_profile = getLightProfile(shortaddr);
|
|
if (0x00 == (light_profile & 0xF0)) {
|
|
return (light_profile & 0x07);
|
|
} else {
|
|
// not a bulb
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
void Z_Devices::hideHueBulb(uint16_t shortaddr, bool hidden) {
|
|
Z_Device &device = getShortAddr(shortaddr);
|
|
if (device.hidden != hidden) {
|
|
device.hidden = hidden;
|
|
dirty();
|
|
}
|
|
}
|
|
// true if device is not knwon or not a bulb - it wouldn't make sense to publish a non-bulb
|
|
bool Z_Devices::isHueBulbHidden(uint16_t shortaddr) const {
|
|
const Z_Device & device = findShortAddr(shortaddr);
|
|
if (foundDevice(device)) {
|
|
return device.hidden;
|
|
}
|
|
return true; // Fallback - Device is considered as hidden
|
|
}
|
|
|
|
// Deferred actions
|
|
// Parse for a specific category, of all deferred for a device if category == 0xFF
|
|
// Only with specific cluster number or for all clusters if cluster == 0xFFFF
|
|
void Z_Devices::resetTimersForDevice(uint16_t shortaddr, uint16_t groupaddr, uint8_t category, uint16_t cluster, uint8_t endpoint) {
|
|
// iterate the list of deferred, and remove any linked to the shortaddr
|
|
for (auto & defer : _deferred) {
|
|
if ((defer.shortaddr == shortaddr) && (defer.groupaddr == groupaddr)) {
|
|
if ((0xFF == category) || (defer.category == category)) {
|
|
if ((0xFFFF == cluster) || (defer.cluster == cluster)) {
|
|
if ((0xFF == endpoint) || (defer.endpoint == endpoint)) {
|
|
_deferred.remove(&defer);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Set timer for a specific device
|
|
void Z_Devices::setTimer(uint16_t shortaddr, uint16_t groupaddr, uint32_t wait_ms, uint16_t cluster, uint8_t endpoint, uint8_t category, uint32_t value, Z_DeviceTimer func) {
|
|
// First we remove any existing timer for same device in same category, except for category=0x00 (they need to happen anyway)
|
|
if (category >= Z_CLEAR_DEVICE) { // if category == 0, we leave all previous timers
|
|
resetTimersForDevice(shortaddr, groupaddr, category, category >= Z_CLEAR_DEVICE_CLUSTER ? cluster : 0xFFFF, category >= Z_CLEAR_DEVICE_CLUSTER_ENDPOINT ? endpoint : 0xFF); // remove any cluster
|
|
}
|
|
|
|
// Now create the new timer
|
|
Z_Deferred & deferred = _deferred.addHead();
|
|
deferred = { wait_ms + millis(), // timer
|
|
shortaddr,
|
|
groupaddr,
|
|
cluster,
|
|
endpoint,
|
|
category,
|
|
value,
|
|
func };
|
|
}
|
|
|
|
// Set timer after the already queued events
|
|
// I.e. the wait_ms is not counted from now, but from the last event queued, which is 'now' or in the future
|
|
void Z_Devices::queueTimer(uint16_t shortaddr, uint16_t groupaddr, uint32_t wait_ms, uint16_t cluster, uint8_t endpoint, uint8_t category, uint32_t value, Z_DeviceTimer func) {
|
|
Z_Device & device = getShortAddr(shortaddr);
|
|
uint32_t now_millis = millis();
|
|
if (TimeReached(device.defer_last_message_sent)) {
|
|
device.defer_last_message_sent = now_millis;
|
|
}
|
|
// defer_last_message_sent equals now or a value in the future
|
|
device.defer_last_message_sent += wait_ms;
|
|
|
|
// for queueing we don't clear the backlog, so we force category to Z_CAT_ALWAYS
|
|
setTimer(shortaddr, groupaddr, (device.defer_last_message_sent - now_millis), cluster, endpoint, Z_CAT_ALWAYS, value, func);
|
|
}
|
|
|
|
// Run timer at each tick
|
|
// WARNING: don't set a new timer within a running timer, this causes memory corruption
|
|
void Z_Devices::runTimer(void) {
|
|
// visit all timers
|
|
for (auto & defer : _deferred) {
|
|
uint32_t timer = defer.timer;
|
|
if (TimeReached(timer)) {
|
|
(*defer.func)(defer.shortaddr, defer.groupaddr, defer.cluster, defer.endpoint, defer.value);
|
|
_deferred.remove(&defer);
|
|
}
|
|
}
|
|
|
|
// check if we need to save to Flash
|
|
if ((_saveTimer) && TimeReached(_saveTimer)) {
|
|
saveZigbeeDevices();
|
|
_saveTimer = 0;
|
|
}
|
|
}
|
|
|
|
// does the new payload conflicts with the existing payload, i.e. values would be overwritten
|
|
// true - one attribute (except LinkQuality) woudl be lost, there is conflict
|
|
// false - new attributes can be safely added
|
|
bool Z_Devices::jsonIsConflict(uint16_t shortaddr, const Z_attribute_list &attr_list) const {
|
|
const Z_Device & device = findShortAddr(shortaddr);
|
|
|
|
if (!foundDevice(device)) { return false; }
|
|
if (attr_list.isEmpty()) {
|
|
return false; // if no previous value, no conflict
|
|
}
|
|
|
|
// compare groups
|
|
if (device.attr_list.isValidGroupId() && attr_list.isValidGroupId()) {
|
|
if (device.attr_list.group_id != attr_list.group_id) { return true; } // groups are in conflict
|
|
}
|
|
|
|
// compare src_ep
|
|
if (device.attr_list.isValidSrcEp() && attr_list.isValidSrcEp()) {
|
|
if (device.attr_list.src_ep != attr_list.src_ep) { return true; }
|
|
}
|
|
|
|
// LQI does not count as conflicting
|
|
|
|
// parse all other parameters
|
|
for (const auto & attr : attr_list) {
|
|
const Z_attribute * curr_attr = device.attr_list.findAttribute(attr);
|
|
if (nullptr != curr_attr) {
|
|
if (!curr_attr->equalsVal(attr)) {
|
|
return true; // the value already exists and is different - conflict!
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Z_Devices::jsonAppend(uint16_t shortaddr, const Z_attribute_list &attr_list) {
|
|
Z_Device & device = getShortAddr(shortaddr);
|
|
device.attr_list.mergeList(attr_list);
|
|
}
|
|
|
|
void Z_Devices::jsonPublishFlush(uint16_t shortaddr) {
|
|
Z_Device & device = getShortAddr(shortaddr);
|
|
if (!device.valid()) { return; } // safeguard
|
|
Z_attribute_list &attr_list = device.attr_list;
|
|
|
|
if (!attr_list.isEmpty()) {
|
|
const char * fname = zigbee_devices.getFriendlyName(shortaddr);
|
|
bool use_fname = (Settings.flag4.zigbee_use_names) && (fname); // should we replace shortaddr with friendlyname?
|
|
|
|
// save parameters is global variables to be used by Rules
|
|
gZbLastMessage.device = shortaddr; // %zbdevice%
|
|
gZbLastMessage.groupaddr = attr_list.group_id; // %zbgroup%
|
|
gZbLastMessage.endpoint = attr_list.src_ep; // %zbendpoint%
|
|
|
|
mqtt_data[0] = 0; // clear string
|
|
// Do we prefix with `ZbReceived`?
|
|
if (!Settings.flag4.remove_zbreceived) {
|
|
Response_P(PSTR("{\"" D_JSON_ZIGBEE_RECEIVED "\":"));
|
|
}
|
|
// What key do we use, shortaddr or name?
|
|
if (use_fname) {
|
|
Response_P(PSTR("%s{\"%s\":{"), mqtt_data, fname);
|
|
} else {
|
|
Response_P(PSTR("%s{\"0x%04X\":{"), mqtt_data, shortaddr);
|
|
}
|
|
// Add "Device":"0x...."
|
|
Response_P(PSTR("%s\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\","), mqtt_data, shortaddr);
|
|
// Add "Name":"xxx" if name is present
|
|
if (fname) {
|
|
Response_P(PSTR("%s\"" D_JSON_ZIGBEE_NAME "\":\"%s\","), mqtt_data, EscapeJSONString(fname).c_str());
|
|
}
|
|
// Add all other attributes
|
|
Response_P(PSTR("%s%s}}"), mqtt_data, attr_list.toString().c_str());
|
|
|
|
if (!Settings.flag4.remove_zbreceived) {
|
|
Response_P(PSTR("%s}"), mqtt_data);
|
|
}
|
|
attr_list.reset(); // clear the attributes
|
|
|
|
if (Settings.flag4.zigbee_distinct_topics) {
|
|
if (Settings.flag4.zb_topic_fname && fname) {
|
|
//Clean special characters and check size of friendly name
|
|
char stemp[TOPSZ];
|
|
strlcpy(stemp, (!strlen(fname)) ? MQTT_TOPIC : fname, sizeof(stemp));
|
|
MakeValidMqtt(0, stemp);
|
|
//Create topic with Prefix3 and cleaned up friendly name
|
|
char frtopic[TOPSZ];
|
|
snprintf_P(frtopic, sizeof(frtopic), PSTR("%s/%s/" D_RSLT_SENSOR), SettingsText(SET_MQTTPREFIX3), stemp);
|
|
MqttPublish(frtopic, Settings.flag.mqtt_sensor_retain);
|
|
} else {
|
|
char subtopic[16];
|
|
snprintf_P(subtopic, sizeof(subtopic), PSTR("%04X/" D_RSLT_SENSOR), shortaddr);
|
|
MqttPublishPrefixTopic_P(TELE, subtopic, Settings.flag.mqtt_sensor_retain);
|
|
}
|
|
} else {
|
|
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR), Settings.flag.mqtt_sensor_retain);
|
|
}
|
|
XdrvRulesProcess(); // apply rules
|
|
}
|
|
}
|
|
|
|
void Z_Devices::jsonPublishNow(uint16_t shortaddr, Z_attribute_list &attr_list) {
|
|
jsonPublishFlush(shortaddr); // flush any previous buffer
|
|
jsonAppend(shortaddr, attr_list);
|
|
jsonPublishFlush(shortaddr); // publish now
|
|
}
|
|
|
|
void Z_Devices::dirty(void) {
|
|
_saveTimer = kZigbeeSaveDelaySeconds * 1000 + millis();
|
|
}
|
|
void Z_Devices::clean(void) {
|
|
_saveTimer = 0;
|
|
}
|
|
|
|
// Parse the command parameters for either:
|
|
// - a short address starting with "0x", example: 0x1234
|
|
// - a long address starting with "0x", example: 0x7CB03EBB0A0292DD
|
|
// - a number 0..99, the index number in ZigbeeStatus
|
|
// - a friendly name, between quotes, example: "Room_Temp"
|
|
uint16_t Z_Devices::parseDeviceParam(const char * param, bool short_must_be_known) const {
|
|
if (nullptr == param) { return BAD_SHORTADDR; }
|
|
size_t param_len = strlen(param);
|
|
char dataBuf[param_len + 1];
|
|
strcpy(dataBuf, param);
|
|
RemoveSpace(dataBuf);
|
|
uint16_t shortaddr = BAD_SHORTADDR; // start with unknown
|
|
|
|
if (strlen(dataBuf) < 4) {
|
|
// simple number 0..99
|
|
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= 99)) {
|
|
shortaddr = zigbee_devices.isKnownIndex(XdrvMailbox.payload - 1);
|
|
}
|
|
} else if ((dataBuf[0] == '0') && ((dataBuf[1] == 'x') || (dataBuf[1] == 'X'))) {
|
|
// starts with 0x
|
|
if (strlen(dataBuf) < 18) {
|
|
// expect a short address
|
|
shortaddr = strtoull(dataBuf, nullptr, 0);
|
|
if (short_must_be_known) {
|
|
shortaddr = zigbee_devices.findShortAddr(shortaddr).shortaddr; // if not found, it reverts to the unknown_device with address BAD_SHORTADDR
|
|
}
|
|
// else we don't check if it's already registered to force unregistered devices
|
|
} else {
|
|
// expect a long address
|
|
uint64_t longaddr = strtoull(dataBuf, nullptr, 0);
|
|
shortaddr = zigbee_devices.isKnownLongAddr(longaddr);
|
|
}
|
|
} else {
|
|
// expect a Friendly Name
|
|
shortaddr = zigbee_devices.isKnownFriendlyName(dataBuf);
|
|
}
|
|
|
|
return shortaddr;
|
|
}
|
|
|
|
// Display the tracked status for a light
|
|
String Z_Devices::dumpLightState(uint16_t shortaddr) const {
|
|
Z_attribute_list attr_list;
|
|
char hex[8];
|
|
|
|
const Z_Device & device = findShortAddr(shortaddr);
|
|
const char * fname = getFriendlyName(shortaddr);
|
|
bool use_fname = (Settings.flag4.zigbee_use_names) && (fname); // should we replace shortaddr with friendlyname?
|
|
snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), shortaddr);
|
|
|
|
attr_list.addAttribute(F(D_JSON_ZIGBEE_DEVICE)).setStr(hex);
|
|
if (fname) {
|
|
attr_list.addAttribute(F(D_JSON_ZIGBEE_NAME)).setStr(fname);
|
|
}
|
|
|
|
if (foundDevice(device)) {
|
|
// dump all known values
|
|
attr_list.addAttribute(F("Reachable")).setBool(device.getReachable());
|
|
if (device.validPower()) { attr_list.addAttribute(F("Power")).setUInt(device.getPower()); }
|
|
const Z_Data_Light & light = device.data.find<Z_Data_Light>(0);
|
|
if (&light != nullptr) {
|
|
light.toAttributes(attr_list, Z_Data_Light::type);
|
|
// Exception, we need to convert Hue to 0..360 instead of 0..254
|
|
if (light.validHue()) {
|
|
attr_list.findOrCreateAttribute(PSTR("Hue")).setUInt(light.getHue());
|
|
}
|
|
}
|
|
// Z_Data_Light::toAttributes(attr_list, device.data.find<Z_Data_Light>(0));
|
|
}
|
|
|
|
Z_attribute_list attr_list_root;
|
|
Z_attribute * attr_root;
|
|
if (use_fname) {
|
|
attr_root = &attr_list_root.addAttribute(fname);
|
|
} else {
|
|
attr_root = &attr_list_root.addAttribute(hex);
|
|
}
|
|
attr_root->setStrRaw(attr_list.toString(true).c_str());
|
|
return attr_list_root.toString(true);
|
|
}
|
|
|
|
// Dump the internal memory of Zigbee devices
|
|
// Mode = 1: simple dump of devices addresses
|
|
// Mode = 2: simple dump of devices addresses and names, endpoints, light
|
|
String Z_Devices::dump(uint32_t dump_mode, uint16_t status_shortaddr) const {
|
|
Z_json_array json_arr;
|
|
|
|
for (const auto & device : _devices) {
|
|
uint16_t shortaddr = device.shortaddr;
|
|
char hex[22];
|
|
|
|
// ignore non-current device, if device specified
|
|
if ((BAD_SHORTADDR != status_shortaddr) && (status_shortaddr != shortaddr)) { continue; }
|
|
|
|
Z_attribute_list attr_list;
|
|
|
|
snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), shortaddr);
|
|
attr_list.addAttribute(F(D_JSON_ZIGBEE_DEVICE)).setStr(hex);
|
|
|
|
if (device.friendlyName > 0) {
|
|
attr_list.addAttribute(F(D_JSON_ZIGBEE_NAME)).setStr(device.friendlyName);
|
|
}
|
|
|
|
if (2 <= dump_mode) {
|
|
hex[0] = '0'; // prefix with '0x'
|
|
hex[1] = 'x';
|
|
Uint64toHex(device.longaddr, &hex[2], 64);
|
|
attr_list.addAttribute(F("IEEEAddr")).setStr(hex);
|
|
if (device.modelId) {
|
|
attr_list.addAttribute(F(D_JSON_MODEL D_JSON_ID)).setStr(device.modelId);
|
|
}
|
|
int8_t bulbtype = getHueBulbtype(shortaddr);
|
|
if (bulbtype >= 0) {
|
|
attr_list.addAttribute(F(D_JSON_ZIGBEE_LIGHT)).setInt(bulbtype); // sign extend, 0xFF changed as -1
|
|
}
|
|
if (device.manufacturerId) {
|
|
attr_list.addAttribute(F("Manufacturer")).setStr(device.manufacturerId);
|
|
}
|
|
Z_json_array arr_ep;
|
|
for (uint32_t i = 0; i < endpoints_max; i++) {
|
|
uint8_t endpoint = device.endpoints[i];
|
|
if (0x00 == endpoint) { break; }
|
|
arr_ep.add(endpoint);
|
|
}
|
|
attr_list.addAttribute(F("Endpoints")).setStrRaw(arr_ep.toString().c_str());
|
|
}
|
|
json_arr.addStrRaw(attr_list.toString(true).c_str());
|
|
}
|
|
return json_arr.toString();
|
|
}
|
|
|
|
// Restore a single device configuration based on json export
|
|
// Input: json element as expported by `ZbStatus2``
|
|
// Mandatory attribue: `Device`
|
|
//
|
|
// Returns:
|
|
// 0 : Ok
|
|
// <0 : Error
|
|
//
|
|
// Ex: {"Device":"0x5ADF","Name":"IKEA_Light","IEEEAddr":"0x90FD9FFFFE03B051","ModelId":"TRADFRI bulb E27 WS opal 980lm","Manufacturer":"IKEA of Sweden","Endpoints":["0x01","0xF2"]}
|
|
int32_t Z_Devices::deviceRestore(JsonParserObject json) {
|
|
|
|
// params
|
|
uint16_t device = 0x0000; // 0x0000 is coordinator so considered invalid
|
|
uint64_t ieeeaddr = 0x0000000000000000LL; // 0 means unknown
|
|
const char * modelid = nullptr;
|
|
const char * manufid = nullptr;
|
|
const char * friendlyname = nullptr;
|
|
int8_t bulbtype = -1;
|
|
size_t endpoints_len = 0;
|
|
|
|
// read mandatory "Device"
|
|
JsonParserToken val_device = json[PSTR("Device")];
|
|
if (val_device) {
|
|
device = (uint32_t) val_device.getUInt(device);
|
|
} else {
|
|
return -1; // missing "Device" attribute
|
|
}
|
|
|
|
ieeeaddr = json.getULong(PSTR("IEEEAddr"), ieeeaddr); // read "IEEEAddr" 64 bits in format "0x0000000000000000"
|
|
friendlyname = json.getStr(PSTR("Name"), nullptr); // read "Name"
|
|
modelid = json.getStr(PSTR("ModelId"), nullptr);
|
|
manufid = json.getStr(PSTR("Manufacturer"), nullptr);
|
|
JsonParserToken tok_bulbtype = json[PSTR(D_JSON_ZIGBEE_LIGHT)];
|
|
|
|
// update internal device information
|
|
updateDevice(device, ieeeaddr);
|
|
if (modelid) { setModelId(device, modelid); }
|
|
if (manufid) { setManufId(device, manufid); }
|
|
if (friendlyname) { setFriendlyName(device, friendlyname); }
|
|
if (tok_bulbtype) { setLightProfile(device, tok_bulbtype.getInt()); }
|
|
|
|
// read "Endpoints"
|
|
JsonParserToken val_endpoints = json[PSTR("Endpoints")];
|
|
if (val_endpoints.isArray()) {
|
|
JsonParserArray arr_ep = JsonParserArray(val_endpoints);
|
|
clearEndpoints(device); // clear even if array is empty
|
|
for (auto ep_elt : arr_ep) {
|
|
uint8_t ep = ep_elt.getUInt();
|
|
if (ep) { addEndpoint(device, ep); }
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
Z_Data_Light & Z_Devices::getLight(uint16_t shortaddr) {
|
|
return getShortAddr(shortaddr).data.get<Z_Data_Light>();
|
|
}
|
|
|
|
/*********************************************************************************************\
|
|
* Export device specific attributes to ZbData
|
|
\*********************************************************************************************/
|
|
void Z_Device::toAttributes(Z_attribute_list & attr_list) const {
|
|
if (validLqi()) { attr_list.addAttribute(PSTR(D_CMND_ZIGBEE_LINKQUALITY)).setUInt(lqi); }
|
|
if (validBatteryPercent()) { attr_list.addAttribute(PSTR("BatteryPercentage")).setUInt(batterypercent); }
|
|
if (validLastSeen()) { attr_list.addAttribute(PSTR("LastSeen")).setUInt(last_seen); }
|
|
}
|
|
|
|
/*********************************************************************************************\
|
|
* Device specific data handlers
|
|
\*********************************************************************************************/
|
|
void Z_Device::setPower(bool power_on, uint8_t ep) {
|
|
data.get<Z_Data_OnOff>(ep).setPower(power_on);
|
|
}
|
|
|
|
bool Z_Device::validPower(uint8_t ep) const {
|
|
const Z_Data_OnOff & onoff = data.find<Z_Data_OnOff>(ep);
|
|
return (&onoff != nullptr);
|
|
}
|
|
|
|
bool Z_Device::getPower(uint8_t ep) const {
|
|
const Z_Data_OnOff & onoff = data.find<Z_Data_OnOff>(ep);
|
|
if (&onoff != nullptr) return onoff.getPower();
|
|
return false;
|
|
}
|
|
|
|
#endif // USE_ZIGBEE
|