Tasmota/tasmota/tasmota_xdrv_driver/xdrv_87_tm1621_sonoff.ino

300 lines
10 KiB
C++

/*
xdrv_87_tm1621_sonoff.ino - Sonoff POWR3xxD and THR3xxD display support for Tasmota
SPDX-FileCopyrightText: 2022 Theo Arends
SPDX-License-Identifier: GPL-3.0-only
*/
#ifdef USE_DISPLAY_TM1621_SONOFF
/*********************************************************************************************\
* Sonoff POWR3xxD and THR3xxD LCD support
*
* {"NAME":"Sonoff POWR316D","GPIO":[32,0,0,0,0,576,0,0,0,224,9280,0,3104,0,320,0,0,0,0,0,0,9184,9248,9216,0,0,0,0,0,0,0,0,0,0,0,0],"FLAG":0,"BASE":1}
* {"NAME":"Sonoff POWR320D","GPIO":[32,0,224,0,225,576,0,0,0,0,9280,0,3104,0,320,0,0,0,0,0,0,9184,9248,9216,0,0,0,0,0,0,0,0,0,0,0,0],"FLAG":0,"BASE":1}
* {"NAME":"Sonoff THR316D","GPIO":[32,0,0,0,225,9280,0,0,0,321,0,576,320,9184,9216,0,0,224,0,9248,0,1,0,3840,0,0,0,0,0,0,0,0,0,0,0,0],"FLAG":0,"BASE":1}
\*********************************************************************************************/
#define XDRV_87 87
#define TM1621_PULSE_WIDTH 10 // microseconds (Sonoff = 100)
#define TM1621_SYS_EN 0x01 // 0b00000001
#define TM1621_LCD_ON 0x03 // 0b00000011
#define TM1621_TIMER_DIS 0x04 // 0b00000100
#define TM1621_WDT_DIS 0x05 // 0b00000101
#define TM1621_TONE_OFF 0x08 // 0b00001000
#define TM1621_BIAS 0x29 // 0b00101001 = LCD 1/3 bias 4 commons option
#define TM1621_IRQ_DIS 0x80 // 0b100x0xxx
enum Tm1621Device { TM1621_USER, TM1621_POWR316D, TM1621_THR316D };
const uint8_t tm1621_commands[] = { TM1621_SYS_EN, TM1621_LCD_ON, TM1621_BIAS, TM1621_TIMER_DIS, TM1621_WDT_DIS, TM1621_TONE_OFF, TM1621_IRQ_DIS };
const char tm1621_kchar[] PROGMEM = { "0|1|2|3|4|5|6|7|8|9|-| " };
// 0 1 2 3 4 5 6 7 8 9 - off
const uint8_t tm1621_digit_row[2][12] = {{ 0x5F, 0x50, 0x3D, 0x79, 0x72, 0x6B, 0x6F, 0x51, 0x7F, 0x7B, 0x20, 0x00 },
{ 0xF5, 0x05, 0xB6, 0x97, 0x47, 0xD3, 0xF3, 0x85, 0xF7, 0xD7, 0x02, 0x00 }};
struct Tm1621 {
uint8_t buffer[8];
char row[2][12];
uint8_t pin_da;
uint8_t pin_cs;
uint8_t pin_rd;
uint8_t pin_wr;
uint8_t state;
uint8_t device;
bool celsius;
bool fahrenheit;
bool humidity;
bool voltage;
bool kwh;
bool present;
} Tm1621;
void TM1621StopSequence(void) {
digitalWrite(Tm1621.pin_cs, 1); // Stop command sequence
delayMicroseconds(TM1621_PULSE_WIDTH / 2);
digitalWrite(Tm1621.pin_da, 1); // Reset data
}
void TM1621SendCmnd(uint16_t command) {
uint16_t full_command = (0x0400 | command) << 5; // 0b100cccccccc00000
digitalWrite(Tm1621.pin_cs, 0); // Start command sequence
delayMicroseconds(TM1621_PULSE_WIDTH / 2);
for (uint32_t i = 0; i < 12; i++) {
digitalWrite(Tm1621.pin_wr, 0); // Start write sequence
if (full_command & 0x8000) {
digitalWrite(Tm1621.pin_da, 1); // Set data
} else {
digitalWrite(Tm1621.pin_da, 0); // Set data
}
delayMicroseconds(TM1621_PULSE_WIDTH);
digitalWrite(Tm1621.pin_wr, 1); // Read data
delayMicroseconds(TM1621_PULSE_WIDTH);
full_command <<= 1;
}
TM1621StopSequence();
}
void TM1621SendAddress(uint16_t address) {
uint16_t full_address = (address | 0x0140) << 7; // 0b101aaaaaa0000000
digitalWrite(Tm1621.pin_cs, 0); // Start command sequence
delayMicroseconds(TM1621_PULSE_WIDTH / 2);
for (uint32_t i = 0; i < 9; i++) {
digitalWrite(Tm1621.pin_wr, 0); // Start write sequence
if (full_address & 0x8000) {
digitalWrite(Tm1621.pin_da, 1); // Set data
} else {
digitalWrite(Tm1621.pin_da, 0); // Set data
}
delayMicroseconds(TM1621_PULSE_WIDTH);
digitalWrite(Tm1621.pin_wr, 1); // Read data
delayMicroseconds(TM1621_PULSE_WIDTH);
full_address <<= 1;
}
}
void TM1621SendCommon(uint8_t common) {
for (uint32_t i = 0; i < 8; i++) {
digitalWrite(Tm1621.pin_wr, 0); // Start write sequence
if (common & 1) {
digitalWrite(Tm1621.pin_da, 1); // Set data
} else {
digitalWrite(Tm1621.pin_da, 0); // Set data
}
delayMicroseconds(TM1621_PULSE_WIDTH);
digitalWrite(Tm1621.pin_wr, 1); // Read data
delayMicroseconds(TM1621_PULSE_WIDTH);
common >>= 1;
}
}
void TM1621SendRows(void) {
// Tm1621.row[x] = "text", "----", " " or a number with one decimal like "0.4", "237.5", "123456.7"
// "123456.7" will be shown as "9999" being a four digit overflow
// AddLog(LOG_LEVEL_DEBUG, PSTR("TM1: Row1 '%s', Row2 '%s'"), Tm1621.row[0], Tm1621.row[1]);
uint8_t buffer[8] = { 0 }; // TM1621 16-segment 4-bit common buffer
char row[4];
for (uint32_t j = 0; j < 2; j++) {
// 0.4V => " 04", 0.0A => " ", 1234.5V => "1234"
uint32_t len = strlen(Tm1621.row[j]);
char *dp = nullptr; // Expect number larger than "123"
int row_idx = len -3; // "1234.5"
if (len <= 5) { // "----", " ", "0.4", "237.5"
dp = strchr(Tm1621.row[j], '.');
row_idx = len -1;
}
else if (len > 6) { // "12345.6"
snprintf_P(Tm1621.row[j], sizeof(Tm1621.row[j]), PSTR("9999"));
row_idx = 3;
}
row[3] = (row_idx >= 0) ? Tm1621.row[j][row_idx--] : ' ';
if ((row_idx >= 0) && dp) { row_idx--; }
row[2] = (row_idx >= 0) ? Tm1621.row[j][row_idx--] : ' ';
row[1] = (row_idx >= 0) ? Tm1621.row[j][row_idx--] : ' ';
row[0] = (row_idx >= 0) ? Tm1621.row[j][row_idx--] : ' ';
// AddLog(LOG_LEVEL_DEBUG, PSTR("TM1: Dump%d %4_H"), j +1, row);
char command[10];
char needle[2] = { 0 };
for (uint32_t i = 0; i < 4; i++) {
needle[0] = row[i];
int index = GetCommandCode(command, sizeof(command), (const char*)needle, tm1621_kchar);
if (-1 == index) { index = 11; }
uint32_t bidx = (0 == j) ? i : 7 -i;
buffer[bidx] = tm1621_digit_row[j][index];
}
if (dp) {
if (0 == j) {
buffer[2] |= 0x80; // Row 1 decimal point
} else {
buffer[5] |= 0x08; // Row 2 decimal point
}
}
}
if (Tm1621.fahrenheit) { buffer[1] |= 0x80; }
if (Tm1621.celsius) { buffer[3] |= 0x80; }
if (Tm1621.kwh) { buffer[4] |= 0x08; }
if (Tm1621.humidity) { buffer[6] |= 0x08; }
if (Tm1621.voltage) { buffer[7] |= 0x08; }
// AddLog(LOG_LEVEL_DEBUG, PSTR("TM1: Dump3 %8_H"), buffer);
TM1621SendAddress(0x10); // Sonoff only uses the upper 16 Segments
for (uint32_t i = 0; i < 8; i++) {
TM1621SendCommon(buffer[i]);
}
TM1621StopSequence();
}
void TM1621PreInit(void) {
if (!PinUsed(GPIO_TM1621_CS) || !PinUsed(GPIO_TM1621_WR) || !PinUsed(GPIO_TM1621_RD) || !PinUsed(GPIO_TM1621_DAT)) { return; }
Tm1621.device = (14 == Pin(GPIO_TM1621_DAT)) ? TM1621_POWR316D : (5 == Pin(GPIO_TM1621_DAT)) ? TM1621_THR316D : TM1621_USER;
Tm1621.present = true;
Tm1621.pin_da = Pin(GPIO_TM1621_DAT);
Tm1621.pin_cs = Pin(GPIO_TM1621_CS);
Tm1621.pin_rd = Pin(GPIO_TM1621_RD);
Tm1621.pin_wr = Pin(GPIO_TM1621_WR);
pinMode(Tm1621.pin_da, OUTPUT);
digitalWrite(Tm1621.pin_da, 1);
pinMode(Tm1621.pin_cs, OUTPUT);
digitalWrite(Tm1621.pin_cs, 1);
pinMode(Tm1621.pin_rd, OUTPUT);
digitalWrite(Tm1621.pin_rd, 1);
pinMode(Tm1621.pin_wr, OUTPUT);
digitalWrite(Tm1621.pin_wr, 1);
Tm1621.state = 100;
AddLog(LOG_LEVEL_INFO, PSTR("DSP: TM1621"));
}
void TM1621Init(void) {
digitalWrite(Tm1621.pin_cs, 0);
delayMicroseconds(80);
digitalWrite(Tm1621.pin_rd, 0);
delayMicroseconds(15);
digitalWrite(Tm1621.pin_wr, 0);
delayMicroseconds(25);
digitalWrite(Tm1621.pin_da, 0);
delayMicroseconds(TM1621_PULSE_WIDTH);
digitalWrite(Tm1621.pin_da, 1);
for (uint32_t command = 0; command < sizeof(tm1621_commands); command++) {
TM1621SendCmnd(tm1621_commands[command]);
}
TM1621SendAddress(0x00);
for (uint32_t segment = 0; segment < 16; segment++) {
TM1621SendCommon(0);
}
TM1621StopSequence();
snprintf_P(Tm1621.row[0], sizeof(Tm1621.row[0]), PSTR("----"));
snprintf_P(Tm1621.row[1], sizeof(Tm1621.row[1]), PSTR("----"));
TM1621SendRows();
}
void TM1621Show(void) {
if (TM1621_POWR316D == Tm1621.device) {
static uint32_t display = 0;
if (0 == display) {
Tm1621.kwh = false;
ext_snprintf_P(Tm1621.row[0], sizeof(Tm1621.row[0]), PSTR("%1_f"), &Energy.voltage[0]);
ext_snprintf_P(Tm1621.row[1], sizeof(Tm1621.row[1]), PSTR("%1_f"), &Energy.current[0]);
Tm1621.voltage = true;
display = 1;
} else {
Tm1621.voltage = false;
ext_snprintf_P(Tm1621.row[0], sizeof(Tm1621.row[0]), PSTR("%1_f"), &Energy.total[0]);
ext_snprintf_P(Tm1621.row[1], sizeof(Tm1621.row[1]), PSTR("%1_f"), &Energy.active_power[0]);
Tm1621.kwh = true;
display = 0;
}
TM1621SendRows();
}
if (TM1621_THR316D == Tm1621.device) {
Tm1621.celsius = false;
Tm1621.fahrenheit = false;
Tm1621.humidity = false;
snprintf_P(Tm1621.row[0], sizeof(Tm1621.row[0]), PSTR(" "));
snprintf_P(Tm1621.row[1], sizeof(Tm1621.row[1]), PSTR(" "));
if (!isnan(TasmotaGlobal.temperature_celsius)) {
float temperature = ConvertTempToFahrenheit(TasmotaGlobal.temperature_celsius);
ext_snprintf_P(Tm1621.row[0], sizeof(Tm1621.row[0]), PSTR("%1_f"), &temperature);
if (Settings->flag.temperature_conversion) { // SetOption8 - Switch between Celsius or Fahrenheit
Tm1621.fahrenheit = true;
} else {
Tm1621.celsius = true;
}
}
if (TasmotaGlobal.humidity > 0.0f) {
Tm1621.humidity = true;
ext_snprintf_P(Tm1621.row[1], sizeof(Tm1621.row[1]), PSTR("%1_f"), &TasmotaGlobal.humidity);
}
TM1621SendRows();
}
}
void TM1621EverySecond(void) {
Tm1621.state++;
if (5 == Tm1621.state) {
TM1621Show();
Tm1621.state = 0;
}
if (102 == Tm1621.state) {
TM1621Init();
Tm1621.state = 0;
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xdrv87(uint8_t function) {
bool result = false;
if (FUNC_INIT == function) {
TM1621PreInit();
}
else if (Tm1621.present) {
switch (function) {
case FUNC_EVERY_SECOND:
TM1621EverySecond();
break;
}
}
return result;
}
#endif // USE_DISPLAY_TM1621_SONOFF