Tasmota/tasmota/xdrv_27_shutter.ino

1629 lines
77 KiB
C++

/*
xdrv_27_Shutter[i].ino - Shutter/Blind support for Tasmota
Copyright (C) 2021 Stefan Bode
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_SHUTTER
/*********************************************************************************************\
* Shutter or Blind support using two consecutive relays
\*********************************************************************************************/
#define XDRV_27 27
#ifndef SHUTTER_STEPPER
#define SHUTTER_STEPPER
#endif
//#define SHUTTER_UNITTEST
#define D_SHUTTER "SHUTTER"
const uint16_t MOTOR_STOP_TIME = 500; // in mS
const uint16_t RESOLUTION = 1000; // incresed to 1000 in 8.5 to ramp servos
const uint8_t STEPS_PER_SECOND = 20; // FUNC_EVERY_50_MSECOND
const uint16_t pwm_max = 500;
const uint16_t pwm_min = 90;
uint8_t calibrate_pos[6] = {0,30,50,70,90,100};
uint16_t messwerte[5] = {30,50,70,90,100};
int32_t velocity_max = 0;
int32_t velocity_change_per_step_max = 0;
int32_t min_runtime_ms = 0;
int32_t current_stop_way = 0;
int32_t next_possible_stop_position = 0;
int32_t current_real_position = 0;
int32_t current_pwm_velocity = 0;
const uint8_t MAX_MODES = 7;
enum Shutterposition_mode {SHT_UNDEF, SHT_TIME, SHT_TIME_UP_DOWN, SHT_TIME_GARAGE, SHT_COUNTER, SHT_PWM_VALUE, SHT_PWM_TIME,};
enum Shutterswitch_mode {SHT_SWITCH, SHT_PULSE,};
enum ShutterButtonStates { SHT_NOT_PRESSED, SHT_PRESSED_MULTI, SHT_PRESSED_HOLD, SHT_PRESSED_IMMEDIATE, SHT_PRESSED_EXT_HOLD, SHT_PRESSED_MULTI_SIMULTANEOUS, SHT_PRESSED_HOLD_SIMULTANEOUS, SHT_PRESSED_EXT_HOLD_SIMULTANEOUS,};
const char kShutterCommands[] PROGMEM = D_PRFX_SHUTTER "|"
D_CMND_SHUTTER_OPEN "|" D_CMND_SHUTTER_CLOSE "|" D_CMND_SHUTTER_TOGGLE "|" D_CMND_SHUTTER_TOGGLEDIR "|" D_CMND_SHUTTER_STOP "|" D_CMND_SHUTTER_POSITION "|"
D_CMND_SHUTTER_OPENTIME "|" D_CMND_SHUTTER_CLOSETIME "|" D_CMND_SHUTTER_RELAY "|" D_CMND_SHUTTER_MODE "|" D_CMND_SHUTTER_PWMRANGE "|"
D_CMND_SHUTTER_SETHALFWAY "|" D_CMND_SHUTTER_SETCLOSE "|" D_CMND_SHUTTER_SETOPEN "|" D_CMND_SHUTTER_INVERT "|" D_CMND_SHUTTER_CLIBRATION "|"
D_CMND_SHUTTER_MOTORDELAY "|" D_CMND_SHUTTER_FREQUENCY "|" D_CMND_SHUTTER_BUTTON "|" D_CMND_SHUTTER_LOCK "|" D_CMND_SHUTTER_ENABLEENDSTOPTIME "|" D_CMND_SHUTTER_INVERTWEBBUTTONS "|"
D_CMND_SHUTTER_STOPOPEN "|" D_CMND_SHUTTER_STOPCLOSE "|" D_CMND_SHUTTER_STOPTOGGLE "|" D_CMND_SHUTTER_STOPTOGGLEDIR "|" D_CMND_SHUTTER_STOPPOSITION "|" D_CMND_SHUTTER_INCDEC "|"
D_CMND_SHUTTER_UNITTEST "|";
void (* const ShutterCommand[])(void) PROGMEM = {
&CmndShutterOpen, &CmndShutterClose, &CmndShutterToggle, &CmndShutterToggleDir, &CmndShutterStop, &CmndShutterPosition,
&CmndShutterOpenTime, &CmndShutterCloseTime, &CmndShutterRelay, &CmndShutterMode, &CmndShutterPwmRange,
&CmndShutterSetHalfway, &CmndShutterSetClose, &CmndShutterSetOpen, &CmndShutterInvert, &CmndShutterCalibration , &CmndShutterMotorDelay,
&CmndShutterFrequency, &CmndShutterButton, &CmndShutterLock, &CmndShutterEnableEndStopTime, &CmndShutterInvertWebButtons,
&CmndShutterStopOpen, &CmndShutterStopClose, &CmndShutterStopToggle, &CmndShutterStopToggleDir, &CmndShutterStopPosition, &CmndShutterIncDec,
&CmndShutterUnitTest};
const char JSON_SHUTTER_POS[] PROGMEM = "\"" D_PRFX_SHUTTER "%d\":{\"Position\":%d,\"Direction\":%d,\"Target\":%d}";
const char JSON_SHUTTER_BUTTON[] PROGMEM = "\"" D_PRFX_SHUTTER "%d\":{\"Button%d\":%d}";
#include <Ticker.h>
Ticker TickerShutter;
struct SHUTTER {
uint32_t time; // operating time of the shutter in 0.05sec
int32_t open_max; // max value on maximum open calculated
int32_t target_position; // position to go to
int32_t start_position; // position before a movement is started. init at start
int32_t real_position; // value between 0 and Shutter[i].open_max
uint16_t open_time; // duration to open the Shutter[i]. 112 = 11.2sec
uint16_t close_time; // duration to close the Shutter[i]. 112 = 11.2sec
uint16_t close_velocity; // in relation to open velocity. higher value = faster
int8_t direction; // 1 == UP , 0 == stop; -1 == down
int8_t lastdirection; // last direction (1 == UP , -1 == down)
uint8_t switch_mode; // how to switch relays: SHT_SWITCH, SHT_PULSE
int16_t motordelay; // initial motorstarttime in 0.05sec. Also uses for ramp at steppers and servos
int16_t pwm_velocity; // frequency of PWN for stepper motors or PWM duty cycle change for PWM servo
uint16_t pwm_value; // dutyload of PWM 0..1023 on ESP8266
uint16_t close_velocity_max; // maximum of PWM change during closeing. Defines velocity on opening. Steppers and Servos only
int32_t accelerator; // speed of ramp-up, ramp down of shutters with velocity control. Steppers and Servos only
} Shutter[MAX_SHUTTERS];
struct SHUTTERGLOBAL {
power_t RelayShutterMask = 0; // bit mask with 11 at the position of relays that belong to at least ONE shutter
power_t RelayOldMask = 0; // bitmatrix that contain the last known state of all relays. Required to detemine the manual changed relay.
power_t RelayCurrentMask = 0; // bitmatrix that contain the current state of all relays
uint8_t position_mode = 0; // how to calculate actual position: SHT_TIME, SHT_COUNTER, SHT_PWM_VALUE, SHT_PWM_TIME
uint8_t skip_relay_change; // avoid overrun at endstops
uint8_t start_reported = 0; // indicates of the shutter start was reported through MQTT JSON
uint16_t open_velocity_max = 1000; // maximum of PWM change during opening. Defines velocity on opening. Steppers and Servos only
} ShutterGlobal;
#define SHT_DIV_ROUND(__A, __B) (((__A) + (__B)/2) / (__B))
void ShutterLogPos(uint32_t i)
{
char stemp2[10];
dtostrfd((float)Shutter[i].time / STEPS_PER_SECOND, 2, stemp2);
AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Shtr%d Real %d, Start %d, Stop %d, Dir %d, Delay %d, Rtc %s [s], Freq %d, PWM %d"),
i+1, Shutter[i].real_position, Shutter[i].start_position, Shutter[i].target_position, Shutter[i].direction, Shutter[i].motordelay, stemp2, Shutter[i].pwm_velocity, Shutter[i].pwm_value);
}
void ExecuteCommandPowerShutter(uint32_t device, uint32_t state, uint32_t source)
{
// first implementation for virtual relays. Avoid switching relay numbers that do not exist.
if (device <= TasmotaGlobal.devices_present) ExecuteCommandPower(device,state,source);
}
void ShutterUpdateVelocity(uint8_t i)
{
// No Logging allowed. Part of RTC Timer
// will be calles through RTC every 50ms.
// do not allow accellerator to stop movement
Shutter[i].pwm_velocity = tmax(velocity_change_per_step_max, Shutter[i].pwm_velocity+Shutter[i].accelerator);
Shutter[i].pwm_velocity = tmin(Shutter[i].direction==1 ? ShutterGlobal.open_velocity_max : Shutter[i].close_velocity_max,Shutter[i].pwm_velocity);
// respect hard coded SDK limit of 100Hz on PWM frequency.
if (ShutterGlobal.position_mode == SHT_COUNTER) {
Shutter[i].pwm_velocity = tmax(100,Shutter[i].pwm_velocity);
}
}
void ShutterRtc50mS(void)
{
// No Logging allowed. RTC Timer
for (uint8_t i = 0; i < TasmotaGlobal.shutters_present; i++) {
if (Shutter[i].direction) {
// update position data before increasing counter
Shutter[i].real_position = ShutterCalculatePosition(i);
Shutter[i].time++;
ShutterCalculateAccelerator(i);
switch (ShutterGlobal.position_mode) {
case SHT_PWM_VALUE:
ShutterUpdateVelocity(i);
Shutter[i].real_position += Shutter[i].direction > 0 ? Shutter[i].pwm_velocity : (Shutter[i].direction < 0 ? -Shutter[i].pwm_velocity : 0);
Shutter[i].pwm_value = SHT_DIV_ROUND((Settings.shutter_pwmrange[1][i]-Settings.shutter_pwmrange[0][i]) * Shutter[i].real_position , Shutter[i].open_max)+Settings.shutter_pwmrange[0][i];
analogWrite(Pin(GPIO_PWM1, i), Shutter[i].pwm_value);
break;
case SHT_COUNTER:
if (Shutter[i].accelerator) {
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Accelerator i=%d -> %d"),i, Shutter[i].accelerator);
ShutterUpdateVelocity(i);
analogWriteFreq(Shutter[i].pwm_velocity);
analogWrite(Pin(GPIO_PWM1, i), 50);
}
break;
}
} // if (Shutter[i].direction)
}
}
int32_t ShutterPercentToRealPosition(int16_t percent, uint32_t index)
{
if (Settings.shutter_set50percent[index] != 50) {
return (percent <= 5) ? Settings.shuttercoeff[2][index] * percent*10 : (Settings.shuttercoeff[1][index] * percent + (Settings.shuttercoeff[0][index]*10))*10;
} else {
int64_t realpos;
// check against DIV 0
for (uint32_t j = 0; j < 5; j++) {
if (0 == Settings.shuttercoeff[j][index]) {
AddLog(LOG_LEVEL_ERROR, PSTR("SHT: RESET/INIT CALIBRATION MATRIX DIV 0"));
for (uint32_t k = 0; k < 5; k++) {
Settings.shuttercoeff[k][index] = SHT_DIV_ROUND(calibrate_pos[k+1] * 1000, calibrate_pos[5]);
}
}
}
for (uint32_t k = 0; k < 5; k++) {
if ((percent * 10) >= Settings.shuttercoeff[k][index]) {
realpos = SHT_DIV_ROUND(Shutter[index].open_max * calibrate_pos[k+1], 100);
//AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Realposition TEMP1: %d, %d %%, coeff %d"), realpos, percent, Settings.shuttercoeff[k][index]);
} else {
//AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Shutter[%d].open_max: %d"),index, Shutter[index].open_max);
if (0 == k) {
realpos = SHT_DIV_ROUND((int64_t)percent * Shutter[index].open_max * calibrate_pos[k+1], Settings.shuttercoeff[k][index]*10 );
//AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Realposition TEMP3: %d, %d %%, coeff %d"), realpos, percent, Settings.shuttercoeff[k][index]);
} else {
//uint32_t addon = ( percent*10 - Settings.shuttercoeff[k-1][index] ) * Shutter[index].open_max * (calibrate_pos[k+1] - calibrate_pos[k]) / (Settings.shuttercoeff[k][index] -Settings.shuttercoeff[k-1][index]) / 100;
//AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Realposition TEMP2: %d, %d %%, coeff %d"), addon, (calibrate_pos[k+1] - calibrate_pos[k]), (Settings.shuttercoeff[k][index] -Settings.shuttercoeff[k-1][index]));
realpos += SHT_DIV_ROUND(((int64_t)percent*10 - Settings.shuttercoeff[k-1][index] ) * Shutter[index].open_max * (calibrate_pos[k+1] - calibrate_pos[k]), (Settings.shuttercoeff[k][index] - Settings.shuttercoeff[k-1][index])*100);
}
break;
}
}
return realpos < 0 ? 0 : realpos;
}
}
uint8_t ShutterRealToPercentPosition(int32_t realpos, uint32_t index)
{
if (Settings.shutter_set50percent[index] != 50) {
return (Settings.shuttercoeff[2][index] * 5 > realpos/10) ? SHT_DIV_ROUND(realpos/10, Settings.shuttercoeff[2][index]) : SHT_DIV_ROUND(realpos/10-Settings.shuttercoeff[0][index]*10, Settings.shuttercoeff[1][index]);
} else {
int64_t realpercent;
for (uint32_t j = 0; j < 5; j++) {
if (realpos >= Shutter[index].open_max * calibrate_pos[j+1] / 100) {
realpercent = SHT_DIV_ROUND(Settings.shuttercoeff[j][index], 10);
//AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Realpercent TEMP1: %d %%, %d, coeff %d"), realpercent, realpos, Shutter[index].open_max * calibrate_pos[j+1] / 100);
} else {
//AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Shutter[%d].open_max: %d"),index, Shutter[index].open_max);
if (0 == j) {
realpercent = SHT_DIV_ROUND(((int64_t)realpos - SHT_DIV_ROUND(Shutter[index].open_max * calibrate_pos[j], 100)) * Settings.shuttercoeff[j][index], calibrate_pos[j+1]/10*Shutter[index].open_max);
} else {
//uint16_t addon = ( realpos - (Shutter[index].open_max * calibrate_pos[j] / 100) ) * 10 * (Settings.shuttercoeff[j][index] - Settings.shuttercoeff[j-1][index]) / (calibrate_pos[j+1] - calibrate_pos[j])/Shutter[index].open_max;
//uint16_t addon = ( realpercent*10 - Settings.shuttercoeff[j-1][index] ) * Shutter[index].open_max * (calibrate_pos[j+1] - calibrate_pos[j]) / (Settings.shuttercoeff[j][index] -Settings.shuttercoeff[j-1][index]) / 100;
//AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Realpercent TEMP2: %d %%, delta %d, %d, coeff %d"), addon,( realpos - (Shutter[index].open_max * calibrate_pos[j] / 100) ) , (calibrate_pos[j+1] - calibrate_pos[j])* Shutter[index].open_max/100, (Settings.shuttercoeff[j][index] -Settings.shuttercoeff[j-1][index]));
realpercent += SHT_DIV_ROUND(((int64_t)realpos - SHT_DIV_ROUND(Shutter[index].open_max * calibrate_pos[j], 100)) * (Settings.shuttercoeff[j][index] - Settings.shuttercoeff[j-1][index]), (calibrate_pos[j+1] - calibrate_pos[j])/10*Shutter[index].open_max) ;
}
break;
}
}
return realpercent < 0 ? 0 : realpercent;
}
}
void ShutterInit(void)
{
TasmotaGlobal.shutters_present = 0;
ShutterGlobal.RelayShutterMask = 0;
//Initialize to get relay that changed
ShutterGlobal.RelayOldMask = TasmotaGlobal.power;
// if shutter 4 is unused
if (Settings.shutter_startrelay[MAX_SHUTTERS -1] == 0) {
ShutterGlobal.open_velocity_max = Settings.shuttercoeff[4][3] > 0 ? Settings.shuttercoeff[4][3] : ShutterGlobal.open_velocity_max;
}
for (uint32_t i = 0; i < MAX_SHUTTERS; i++) {
// set startrelay to 1 on first init, but only to shutter 1. 90% usecase
Settings.shutter_startrelay[i] = (Settings.shutter_startrelay[i] == 0 && i == 0? 1 : Settings.shutter_startrelay[i]);
if (Settings.shutter_startrelay[i] && (Settings.shutter_startrelay[i] <= MAX_RELAYS )) {
TasmotaGlobal.shutters_present++;
// Add the two relays to the mask to knaw they belong to shutters
ShutterGlobal.RelayShutterMask |= 3 << (Settings.shutter_startrelay[i] -1) ;
// All shutters must have same mode. Switch OR Pulse. N
switch (Settings.pulse_timer[i]) {
case 0:
Shutter[i].switch_mode = SHT_SWITCH;
break;
default:
Shutter[i].switch_mode = SHT_PULSE;
break;
}
if (Settings.shutter_mode == SHT_UNDEF) {
bool relay_in_interlock = false;
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Mode undef.. calculate..."));
for (uint32_t j = 0; j < MAX_INTERLOCKS * Settings.flag.interlock; j++) { // CMND_INTERLOCK - Enable/disable interlock
//AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Interlock state i=%d %d, flag %d, Shuttermask %d, MaskedIL %d"),i, Settings.interlock[i], Settings.flag.interlock,ShutterGlobal.RelayShutterMask, Settings.interlock[i]&ShutterGlobal.RelayShutterMask);
if (Settings.interlock[j] && (Settings.interlock[j] & ShutterGlobal.RelayShutterMask)) {
//AddLog_P(LOG_LEVEL_DEBUG, PSTR("SHT: Relay in Interlock group"));
relay_in_interlock = true;
}
}
if (relay_in_interlock) {
ShutterGlobal.position_mode = SHT_TIME;
} else {
ShutterGlobal.position_mode = SHT_TIME_UP_DOWN;
if (PinUsed(GPIO_PWM1, i) && PinUsed(GPIO_CNTR1, i)) {
ShutterGlobal.position_mode = SHT_COUNTER;
}
}
} else {
ShutterGlobal.position_mode = Settings.shutter_mode;
}
// main function for stepper and servos to control velocity and acceleration.
TickerShutter.attach_ms(50, ShutterRtc50mS );
// default the 50 percent should not have any impact without changing it. set to 60
Settings.shutter_set50percent[i] = (Settings.shutter_set50percent[i] > 0) ? Settings.shutter_set50percent[i] : 50;
// use 10 sec. as default to allow everybody to play without deep initialize
Shutter[i].open_time = Settings.shutter_opentime[i] = (Settings.shutter_opentime[i] > 0) ? Settings.shutter_opentime[i] : 100;
Shutter[i].close_time = Settings.shutter_closetime[i] = (Settings.shutter_closetime[i] > 0) ? Settings.shutter_closetime[i] : 100;
// Update Calculation 20 because time interval is 0.05 sec ans time is in 0.1sec
Shutter[i].open_max = STEPS_PER_SECOND * RESOLUTION * Shutter[i].open_time / 10;
Shutter[i].close_velocity = Shutter[i].open_max / Shutter[i].close_time / 2 ;
// calculate a ramp slope at the first 5 percent to compensate that shutters move with down part later than the upper part
if (Settings.shutter_set50percent[i] != 50) {
Settings.shuttercoeff[1][i] = Shutter[i].open_max/10 * (100 - Settings.shutter_set50percent[i] ) / 5000 ;
Settings.shuttercoeff[0][i] = Shutter[i].open_max/100 - (Settings.shuttercoeff[1][i] * 10);
Settings.shuttercoeff[2][i] = (int32_t)(Settings.shuttercoeff[0][i]*10 + 5 * Settings.shuttercoeff[1][i]) / 5;
//AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Shtr%d Shutter[i].open_max %d, 50perc:%d, 0:%d, 1:%d 2:%d"), i, Shutter[i].open_max, Settings.shutter_set50percent[i], Settings.shuttercoeff[0][i],Settings.shuttercoeff[1][i],Settings.shuttercoeff[2][i]);
}
ShutterGlobal.RelayShutterMask |= 3 << (Settings.shutter_startrelay[i] -1);
Shutter[i].real_position = ShutterPercentToRealPosition(Settings.shutter_position[i], i);
Shutter[i].start_position = Shutter[i].target_position = Shutter[i].real_position;
Shutter[i].motordelay = Settings.shutter_motordelay[i];
Shutter[i].lastdirection = (50 < Settings.shutter_position[i]) ? 1 : -1;
switch (ShutterGlobal.position_mode) {
case SHT_PWM_VALUE:
ShutterGlobal.open_velocity_max = RESOLUTION;
// Initiate pwm range with defaults if not already set.
Settings.shutter_pwmrange[0][i] = Settings.shutter_pwmrange[0][i] > 0 ? Settings.shutter_pwmrange[0][i] : pwm_min;
Settings.shutter_pwmrange[1][i] = Settings.shutter_pwmrange[1][i] > 0 ? Settings.shutter_pwmrange[1][i] : pwm_max;
break;
}
Shutter[i].close_velocity_max = ShutterGlobal.open_velocity_max*Shutter[i].open_time / Shutter[i].close_time;
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d Openvel %d, Closevel: %d"),i, ShutterGlobal.open_velocity_max, Shutter[i].close_velocity_max);
AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Shtr%d Init. Pos %d, Inverted %d, Locked %d, End stop time enabled %d, webButtons inverted %d"),
i+1, Shutter[i].real_position,
(Settings.shutter_options[i]&1) ? 1 : 0, (Settings.shutter_options[i]&2) ? 1 : 0, (Settings.shutter_options[i]&4) ? 1 : 0, (Settings.shutter_options[i]&8) ? 1 : 0);
} else {
// terminate loop at first INVALID Shutter[i].
break;
}
ShutterLimitRealAndTargetPositions(i);
Settings.shutter_accuracy = 1;
}
}
void ShutterReportPosition(bool always, uint32_t index)
{
Response_P(PSTR("{"));
TasmotaGlobal.rules_flag.shutter_moving = 0;
uint32_t i = 0;
uint32_t n = TasmotaGlobal.shutters_present;
if( index != MAX_SHUTTERS) {
i = index;
n = index+1;
}
for (i; i < n; i++) {
//AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Shtr%d Real Pos %d"), i+1,Shutter[i].real_position);
uint32_t position = ShutterRealToPercentPosition(Shutter[i].real_position, i);
if (Shutter[i].direction != 0) {
TasmotaGlobal.rules_flag.shutter_moving = 1;
ShutterLogPos(i);
}
if (i && index == MAX_SHUTTERS) { ResponseAppend_P(PSTR(",")); }
uint32_t target = ShutterRealToPercentPosition(Shutter[i].target_position, i);
ResponseAppend_P(JSON_SHUTTER_POS, i+1, (Settings.shutter_options[i] & 1) ? 100-position : position, Shutter[i].direction,(Settings.shutter_options[i] & 1) ? 100-target : target );
}
ResponseJsonEnd();
if (always || (TasmotaGlobal.rules_flag.shutter_moving)) {
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_PRFX_SHUTTER)); // RulesProcess() now re-entry protected
}
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: rules_flag.shutter_moving: %d, moved %d"), TasmotaGlobal.rules_flag.shutter_moving, TasmotaGlobal.rules_flag.shutter_moved);
}
void ShutterLimitRealAndTargetPositions(uint32_t i) {
if (Shutter[i].real_position<0) Shutter[i].real_position = 0;
if (Shutter[i].real_position>Shutter[i].open_max) Shutter[i].real_position = Shutter[i].open_max;
if (Shutter[i].target_position<0) Shutter[i].target_position = 0;
if (Shutter[i].target_position>Shutter[i].open_max) Shutter[i].target_position = Shutter[i].open_max;
}
void ShutterCalculateAccelerator(uint8_t i)
{
// No Logging allowed. Part of RTC Timer
if (Shutter[i].direction != 0) {
switch (ShutterGlobal.position_mode) {
case SHT_COUNTER:
case SHT_PWM_VALUE:
current_real_position = Shutter[i].real_position;
current_pwm_velocity = Shutter[i].pwm_velocity;
// calculate max velocity allowed in this direction
velocity_max = Shutter[i].direction == 1 ? ShutterGlobal.open_velocity_max : Shutter[i].close_velocity_max;
// calculate max change of velocyty based on the defined motordelay in steps
velocity_change_per_step_max = velocity_max / (Shutter[i].motordelay>0 ? Shutter[i].motordelay : 1);
// minimumtime required from current velocity to stop
min_runtime_ms = current_pwm_velocity * 1000 / STEPS_PER_SECOND / velocity_change_per_step_max;
// decellaration way from current velocity
current_stop_way = min_runtime_ms * STEPS_PER_SECOND * (current_pwm_velocity + velocity_change_per_step_max) * Shutter[i].direction / 2 / ShutterGlobal.open_velocity_max - (Shutter[i].accelerator<0?Shutter[i].direction*1000*current_pwm_velocity/ShutterGlobal.open_velocity_max:0);
next_possible_stop_position = current_real_position + current_stop_way ;
// ensure that the accelerotor kicks in at the first overrun of the target position
if ( Shutter[i].accelerator < 0 || next_possible_stop_position * Shutter[i].direction > Shutter[i].target_position * Shutter[i].direction ) {
// if startet to early because of 0.05sec maximum accuracy and final position is to far away (200) accelerate a bit less
if (next_possible_stop_position * Shutter[i].direction+200 < Shutter[i].target_position * Shutter[i].direction) {
Shutter[i].accelerator = -velocity_change_per_step_max*9/10;
} else {
// in any case increase accelleration if overrun is detected during decelleration
if (next_possible_stop_position * Shutter[i].direction > Shutter[i].target_position * Shutter[i].direction && Shutter[i].accelerator < 0) {
Shutter[i].accelerator = -velocity_change_per_step_max*11/10;
} else {
// as long as the calculated end position is ok stay with proposed decelleration
Shutter[i].accelerator = -velocity_change_per_step_max;
}
}
// detect during the acceleration phase the point final speed is reached
} else if ( Shutter[i].accelerator > 0 && current_pwm_velocity == velocity_max) {
Shutter[i].accelerator = 0;
}
break;
}
}
}
void ShutterDecellerateForStop(uint8_t i)
{
switch (ShutterGlobal.position_mode) {
case SHT_PWM_VALUE:
case SHT_COUNTER:
int16_t missing_steps;
Shutter[i].accelerator = -(ShutterGlobal.open_velocity_max / (Shutter[i].motordelay>4 ? (Shutter[i].motordelay*11)/10 : 4) );
while (Shutter[i].pwm_velocity > -2*Shutter[i].accelerator && Shutter[i].pwm_velocity != 100) {
delay(50);
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Velocity %ld, Delta %d"), Shutter[i].pwm_velocity, Shutter[i].accelerator );
// Control will be done in RTC Ticker.
}
if (ShutterGlobal.position_mode == SHT_COUNTER){
missing_steps = ((Shutter[i].target_position-Shutter[i].start_position)*Shutter[i].direction*ShutterGlobal.open_velocity_max/RESOLUTION/STEPS_PER_SECOND) - RtcSettings.pulse_counter[i];
//prepare for stop PWM
Shutter[i].accelerator = 0;
Shutter[i].pwm_velocity = 0;
while (RtcSettings.pulse_counter[i] < (uint32_t)(Shutter[i].target_position-Shutter[i].start_position)*Shutter[i].direction*ShutterGlobal.open_velocity_max/RESOLUTION/STEPS_PER_SECOND) {
}
analogWrite(Pin(GPIO_PWM1, i), 0); // removed with 8.3 because of reset caused by watchog
Shutter[i].real_position = ShutterCalculatePosition(i);
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Remain steps %d"), missing_steps);
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Real %d, Pulsecount %d, tobe %d, Start %d"), Shutter[i].real_position,RtcSettings.pulse_counter[i], (uint32_t)(Shutter[i].target_position-Shutter[i].start_position)*Shutter[i].direction*ShutterGlobal.open_velocity_max/RESOLUTION/STEPS_PER_SECOND, Shutter[i].start_position);
}
Shutter[i].direction = 0;
Shutter[i].pwm_velocity = 0;
break;
}
}
void ShutterPowerOff(uint8_t i) {
AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Stop Shutter %d. Switchmode %d"), i+1,Shutter[i].switch_mode); // fix log to indicate correct shutter number
ShutterDecellerateForStop(i);
switch (Shutter[i].switch_mode) {
case SHT_SWITCH:
if ((1 << (Settings.shutter_startrelay[i]-1)) & TasmotaGlobal.power) {
ExecuteCommandPowerShutter(Settings.shutter_startrelay[i], 0, SRC_SHUTTER);
}
if ((1 << (Settings.shutter_startrelay[i])) & TasmotaGlobal.power) {
ExecuteCommandPowerShutter(Settings.shutter_startrelay[i]+1, 0, SRC_SHUTTER);
}
break;
case SHT_PULSE:
uint8_t cur_relay = Settings.shutter_startrelay[i] + (Shutter[i].direction == 1 ? 0 : (uint8_t)(ShutterGlobal.position_mode == SHT_TIME)) ;
// we have a momentary switch here. Needs additional pulse on same relay after the end
if ((SRC_PULSETIMER == TasmotaGlobal.last_source || SRC_SHUTTER == TasmotaGlobal.last_source || SRC_WEBGUI == TasmotaGlobal.last_source)) {
ExecuteCommandPowerShutter(cur_relay, 1, SRC_SHUTTER);
// switch off direction relay to make it power less
if (((1 << (Settings.shutter_startrelay[i])) & TasmotaGlobal.power) && Settings.shutter_startrelay[i]+1 != cur_relay) {
ExecuteCommandPowerShutter(Settings.shutter_startrelay[i]+1, 0, SRC_SHUTTER);
}
} else {
TasmotaGlobal.last_source = SRC_SHUTTER;
}
break;
}
// Store current PWM value to ensure proper position after reboot.
switch (ShutterGlobal.position_mode) {
case SHT_PWM_VALUE:
char scmnd[20];
#ifdef SHUTTER_CLEAR_PWM_ONSTOP
// free the PWM servo lock on stop.
snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_PWM "%d 0" ), i+1);
#else
snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_PWM "%d %d" ), i+1,Shutter[i].pwm_value);
#endif
ExecuteCommand(scmnd, SRC_BUTTON);
break;
}
if (Shutter[i].direction !=0) {
Shutter[i].direction = 0;
delay(MOTOR_STOP_TIME);
}
}
void ShutterUpdatePosition(void)
{
char scommand[CMDSZ];
char stopic[TOPSZ];
for (uint32_t i = 0; i < TasmotaGlobal.shutters_present; i++) {
if (Shutter[i].direction != 0) {
if (!ShutterGlobal.start_reported) {
ShutterReportPosition(true, i);
XdrvRulesProcess();
ShutterGlobal.start_reported = 1;
}
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Time %d, cStop %d, cVelo %d, mVelo %d, aVelo %d, mRun %d, aPos %d, nStop %d, Trgt %d, mVelo %d, Dir %d"),
Shutter[i].time, current_stop_way, current_pwm_velocity, velocity_max, Shutter[i].accelerator, min_runtime_ms, current_real_position,
next_possible_stop_position, Shutter[i].target_position, velocity_change_per_step_max, Shutter[i].direction);
if ( Shutter[i].real_position * Shutter[i].direction >= Shutter[i].target_position * Shutter[i].direction || (ShutterGlobal.position_mode == SHT_COUNTER && Shutter[i].accelerator <0 && Shutter[i].pwm_velocity+Shutter[i].accelerator<100)) {
if (Shutter[i].direction != 0) {
Shutter[i].lastdirection = Shutter[i].direction;
}
ShutterPowerOff(i);
ShutterLimitRealAndTargetPositions(i);
Settings.shutter_position[i] = ShutterRealToPercentPosition(Shutter[i].real_position, i);
Shutter[i].start_position = Shutter[i].real_position;
ShutterLogPos(i);
// sending MQTT result to broker
snprintf_P(scommand, sizeof(scommand),PSTR(D_SHUTTER "%d"), i+1);
GetTopic_P(stopic, STAT, TasmotaGlobal.mqtt_topic, scommand);
Response_P("%d", (Settings.shutter_options[i] & 1) ? 100 - Settings.shutter_position[i]: Settings.shutter_position[i]);
MqttPublish(stopic, Settings.flag.mqtt_power_retain); // CMND_POWERRETAIN
ShutterReportPosition(true, i);
TasmotaGlobal.rules_flag.shutter_moved = 1;
XdrvRulesProcess();
}
}
}
}
bool ShutterState(uint32_t device) {
if (device > 4) { return false; }
device--;
device &= 3;
return (Settings.flag3.shutter_mode && // SetOption80 - Enable shutter support
(ShutterGlobal.RelayShutterMask & (1 << (Settings.shutter_startrelay[device]-1))) );
}
void ShutterAllowPreStartProcedure(uint8_t i)
{
#ifdef USE_RULES
uint32_t uptime_Local=0;
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Delay Start. var%d <99>=<%s>, max10s?"),i+i, rules_vars[i]);
TasmotaGlobal.rules_flag.shutter_moving = 1;
XdrvRulesProcess();
uptime_Local = TasmotaGlobal.uptime;
while (uptime_Local+10 > TasmotaGlobal.uptime && (String)rules_vars[i] == "99") {
loop();
}
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Delay Start. Done"));
#endif // USE_RULES
}
void ShutterStartInit(uint32_t i, int32_t direction, int32_t target_pos)
{
//AddLog_P(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: dir %d, delta1 %d, delta2 %d, grant %d"),direction, (Shutter[i].open_max - Shutter[i].real_position) / Shutter[i].close_velocity, Shutter[i].real_position / Shutter[i].close_velocity, 2+Shutter[i].motordelay);
if ( ( (1 == direction) && ((Shutter[i].open_max - Shutter[i].real_position) / 100 <= 2) )
|| ( (-1 == direction) && (Shutter[i].real_position / Shutter[i].close_velocity <= 2)) ) {
ShutterGlobal.skip_relay_change = 1;
} else {
Shutter[i].pwm_velocity = 0;
switch (ShutterGlobal.position_mode) {
#ifdef SHUTTER_STEPPER
case SHT_COUNTER:
analogWriteFreq(Shutter[i].pwm_velocity);
analogWrite(Pin(GPIO_PWM1, i), 0);
RtcSettings.pulse_counter[i] = 0;
break;
#endif
}
Shutter[i].accelerator = ShutterGlobal.open_velocity_max / (Shutter[i].motordelay>0 ? Shutter[i].motordelay : 1);
Shutter[i].target_position = target_pos;
Shutter[i].start_position = Shutter[i].real_position;
TasmotaGlobal.rules_flag.shutter_moving = 1;
ShutterAllowPreStartProcedure(i);
Shutter[i].time = 0;
Shutter[i].direction = direction;
ShutterGlobal.skip_relay_change = 0;
TasmotaGlobal.rules_flag.shutter_moved = 0;
ShutterGlobal.start_reported = 0;
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: real %d, start %d, counter %d,freq_max %d, dir %d, freq %d"),Shutter[i].real_position, Shutter[i].start_position ,RtcSettings.pulse_counter[i],ShutterGlobal.open_velocity_max , Shutter[i].direction ,ShutterGlobal.open_velocity_max );
}
//AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Start shtr%d from %d to %d in direction %d"), i, Shutter[i].start_position, Shutter[i].target_position, Shutter[i].direction);
}
int32_t ShutterCalculatePosition(uint32_t i)
{
// No Logging allowed. Part of RTC Timer
if (Shutter[i].direction != 0) {
switch (ShutterGlobal.position_mode) {
case SHT_COUNTER:
return ((int64_t)RtcSettings.pulse_counter[i]*Shutter[i].direction*STEPS_PER_SECOND * RESOLUTION / ShutterGlobal.open_velocity_max)+Shutter[i].start_position;
break;
case SHT_TIME:
case SHT_TIME_UP_DOWN:
case SHT_TIME_GARAGE:
return Shutter[i].start_position + ( (Shutter[i].time - Shutter[i].motordelay) * (Shutter[i].direction > 0 ? RESOLUTION : -Shutter[i].close_velocity));
break;
case SHT_PWM_TIME:
break;
case SHT_PWM_VALUE:
return Shutter[i].real_position;
break;
default:
break;
}
} else {
return Shutter[i].real_position;
}
return 0; // Never reaches here, Satisfy compiler
}
void ShutterRelayChanged(void)
{
// ShutterGlobal.RelayCurrentMask = binary relay that was recently changed and cause an Action
// powerstate_local = binary powermatrix and relays from shutter: 0..3
// relays_changed = bool if one of the relays that belong to the shutter changed not by shutter or pulsetimer
char stemp1[10];
for (uint32_t i = 0; i < TasmotaGlobal.shutters_present; i++) {
power_t powerstate_local = (TasmotaGlobal.power >> (Settings.shutter_startrelay[i] -1)) & 3;
// SRC_IGNORE added because INTERLOCK function bite causes this as last source for changing the relay.
//uint8 manual_relays_changed = ((ShutterGlobal.RelayCurrentMask >> (Settings.shutter_startrelay[i] -1)) & 3) && SRC_IGNORE != TasmotaGlobal.last_source && SRC_SHUTTER != TasmotaGlobal.last_source && SRC_PULSETIMER != TasmotaGlobal.last_source ;
uint8 manual_relays_changed = ((ShutterGlobal.RelayCurrentMask >> (Settings.shutter_startrelay[i] -1)) & 3) && SRC_SHUTTER != TasmotaGlobal.last_source && SRC_PULSETIMER != TasmotaGlobal.last_source ;
AddLog_P(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d, Source %s, Powerstate %ld, RelayMask %d, ManualChange %d"),
i+1, GetTextIndexed(stemp1, sizeof(stemp1), TasmotaGlobal.last_source, kCommandSource), powerstate_local,ShutterGlobal.RelayCurrentMask,manual_relays_changed);
if (manual_relays_changed) {
//ShutterGlobal.skip_relay_change = true;
ShutterLimitRealAndTargetPositions(i);
switch (Shutter[i].switch_mode ) {
case SHT_PULSE:
if (Shutter[i].direction != 0 && powerstate_local) {
Shutter[i].target_position = Shutter[i].real_position;
powerstate_local = 0;
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d, Switch OFF motor. Target %ld, Source %s, Powerstate %ld, RelayMask %d, ManualChange %d"),
i+1, Shutter[i].target_position, GetTextIndexed(stemp1, sizeof(stemp1), TasmotaGlobal.last_source, kCommandSource), powerstate_local,ShutterGlobal.RelayCurrentMask,manual_relays_changed);
}
break;
default:
TasmotaGlobal.last_source = SRC_SHUTTER; // avoid switch off in the next loop
if (Shutter[i].direction != 0 ) Shutter[i].target_position = Shutter[i].real_position;
}
switch (ShutterGlobal.position_mode) {
// enum Shutterposition_mode {SHT_TIME, SHT_TIME_UP_DOWN, SHT_TIME_GARAGE, SHT_COUNTER, SHT_PWM_VALUE, SHT_PWM_TIME,};
case SHT_TIME_UP_DOWN:
case SHT_COUNTER:
case SHT_PWM_VALUE:
case SHT_PWM_TIME:
ShutterPowerOff(i);
switch (powerstate_local) {
case 1:
ShutterStartInit(i, 1, Shutter[i].open_max);
break;
case 3:
ShutterStartInit(i, -1, 0);
break;
default:
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d Switch OFF motor."),i);
Shutter[i].target_position = Shutter[i].real_position;
}
break;
case SHT_TIME:
switch (powerstate_local) {
case 1:
ShutterStartInit(i, 1, Shutter[i].open_max);
break;
case 2:
ShutterStartInit(i, -1, 0);
break;
default:
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d Switch OFF motor."),i);
Shutter[i].target_position = Shutter[i].real_position;
}
break;
case SHT_TIME_GARAGE:
switch (powerstate_local) {
case 1:
ShutterStartInit(i, Shutter[i].lastdirection*-1 , Shutter[i].lastdirection == 1 ? 0 : Shutter[i].open_max);
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d Garage. NewTarget %d"), i, Shutter[i].target_position);
break;
default:
Shutter[i].target_position = Shutter[i].real_position;
}
} // switch (ShutterGlobal.position_mode)
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d, Target %ld, Powerstatelocal %d"), i+1, Shutter[i].target_position, powerstate_local);
} // if (manual_relays_changed)
} // for (uint32_t i = 0; i < TasmotaGlobal.shutters_present; i++)
}
bool ShutterButtonIsSimultaneousHold(uint32_t button_index, uint32_t shutter_index) {
// check for simultaneous shutter button hold
uint32 min_shutterbutton_hold_timer = -1; // -1 == max(uint32)
for (uint32_t i = 0; i < MAX_SHUTTER_KEYS; i++) {
if ((button_index != i) && (Settings.shutter_button[i] & (1<<31)) && ((Settings.shutter_button[i] & 0x03) == shutter_index) && (Button.hold_timer[i] < min_shutterbutton_hold_timer))
min_shutterbutton_hold_timer = Button.hold_timer[i];
}
return ((-1 != min_shutterbutton_hold_timer) && (min_shutterbutton_hold_timer > (Button.hold_timer[button_index]>>1)));
}
void ShutterButtonHandler(void)
{
uint8_t buttonState = SHT_NOT_PRESSED;
uint8_t button = XdrvMailbox.payload;
uint8_t press_index;
uint32_t button_index = XdrvMailbox.index;
uint8_t shutter_index = Settings.shutter_button[button_index] & 0x03;
uint16_t loops_per_second = 1000 / Settings.button_debounce; // ButtonDebounce (50)
if ((PRESSED == button) && (NOT_PRESSED == Button.last_state[button_index])) {
if (Settings.flag.button_single) { // SetOption13 (0) - Allow only single button press for immediate action
buttonState = SHT_PRESSED_MULTI;
press_index = 1;
} else {
if ((Shutter[shutter_index].direction) && (Button.press_counter[button_index]==0)) {
buttonState = SHT_PRESSED_IMMEDIATE;
press_index = 1;
Button.press_counter[button_index] = 99; // Remember to discard further action for press & hold within button timings
} else {
Button.press_counter[button_index] = (Button.window_timer[button_index]) ? Button.press_counter[button_index] +1 : 1;
// Button.window_timer[button_index] = (Button.press_counter[button_index]==1) ? loops_per_second / 2 : loops_per_second; // 0.5 second multi press window after 1st press, 1s afterwards
Button.window_timer[button_index] = (loops_per_second >> 2) * 3; // 0.75 second multi press window
}
}
TasmotaGlobal.blinks = 201;
}
if (NOT_PRESSED == button) {
Button.hold_timer[button_index] = 0;
} else {
Button.hold_timer[button_index]++;
if (!Settings.flag.button_single) { // SetOption13 (0) - Allow only single button press for immediate action
if (Settings.param[P_HOLD_IGNORE] > 0) { // SetOption40 (0) - Do not ignore button hold
if (Button.hold_timer[button_index] > loops_per_second * Settings.param[P_HOLD_IGNORE] / 10) {
Button.hold_timer[button_index] = 0; // Reset button hold counter to stay below hold trigger
Button.press_counter[button_index] = 0; // Discard button press to disable functionality
}
}
if ((Button.press_counter[button_index]<99) && (Button.hold_timer[button_index] == loops_per_second * Settings.param[P_HOLD_TIME] / 10)) { // press still valid && SetOption32 (40) - Button hold
// check for simultaneous shutter button hold
if (ShutterButtonIsSimultaneousHold(button_index, shutter_index)) {
// simultaneous shutter button hold detected
for (uint32_t i = 0; i < MAX_SHUTTER_KEYS; i++)
if ((Settings.shutter_button[i] & (1<<31)) && ((Settings.shutter_button[i] & 0x03) == shutter_index))
Button.press_counter[i] = 99; // Remember to discard further action for press & hold within button timings
press_index = 0;
buttonState = SHT_PRESSED_HOLD_SIMULTANEOUS;
}
if (Button.press_counter[button_index]<99) {
press_index = 0;
buttonState = SHT_PRESSED_HOLD;
}
Button.press_counter[button_index] = 0;
}
if ((Button.press_counter[button_index]==0) && (Button.hold_timer[button_index] == loops_per_second * IMMINENT_RESET_FACTOR * Settings.param[P_HOLD_TIME] / 10)) { // SetOption32 (40) - Button held for factor times longer
press_index = -1;
// check for simultaneous shutter button extend hold
if (ShutterButtonIsSimultaneousHold(button_index, shutter_index)) {
// simultaneous shutter button extend hold detected
buttonState = SHT_PRESSED_EXT_HOLD_SIMULTANEOUS;
} else {
buttonState = SHT_PRESSED_EXT_HOLD;
}
}
}
}
if (!Settings.flag.button_single) { // SetOption13 (0) - Allow multi-press
if (Button.window_timer[button_index]) {
Button.window_timer[button_index]--;
} else {
if (!TasmotaGlobal.restart_flag && !Button.hold_timer[button_index] && (Button.press_counter[button_index] > 0)) {
if (Button.press_counter[button_index]<99) {
// check for simultaneous shutter button press
uint32 min_shutterbutton_press_counter = -1; // -1 == max(uint32)
for (uint32_t i = 0; i < MAX_SHUTTER_KEYS; i++) {
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: ShutterButton[i] %ld, ShutterIndex %d, ButtonPressCounter[i] %d, minShutterButtonPressCounter %d, i %d"),
Settings.shutter_button[i], shutter_index, Button.press_counter[i] , min_shutterbutton_press_counter, i);
if ((button_index != i) && (Settings.shutter_button[i] & (1<<31)) && ((Settings.shutter_button[i] & 0x03) == shutter_index) && (i != button_index) && (Button.press_counter[i] < min_shutterbutton_press_counter)) {
min_shutterbutton_press_counter = Button.press_counter[i];
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: minShutterButtonPressCounter %d"), min_shutterbutton_press_counter);
}
}
if (min_shutterbutton_press_counter == Button.press_counter[button_index]) {
// simultaneous shutter button press detected
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Simultanous press detected"));
press_index = Button.press_counter[button_index];
for (uint32_t i = 0; i < MAX_SHUTTER_KEYS; i++)
if ((Settings.shutter_button[i] & (1<<31)) && ((Settings.shutter_button[i] & 0x03) != shutter_index))
Button.press_counter[i] = 99; // Remember to discard further action for press & hold within button timings
buttonState = SHT_PRESSED_MULTI_SIMULTANEOUS;
}
if ((buttonState != SHT_PRESSED_MULTI_SIMULTANEOUS) && (Button.press_counter[button_index]<99)) {
// no simultaneous shutter button press >3 detected
press_index = Button.press_counter[button_index];
buttonState = SHT_PRESSED_MULTI;
}
}
Button.press_counter[button_index] = 0;
}
}
}
if (buttonState != SHT_NOT_PRESSED) {
if ((!Settings.flag.button_restrict) && (((press_index>=5) && (press_index<=7)) || (buttonState == SHT_PRESSED_EXT_HOLD) || (buttonState == SHT_PRESSED_EXT_HOLD_SIMULTANEOUS))){
// check number of buttons for this shutter
uint8_t shutter_index_num_buttons = 0;
for (uint32_t i = 0; i < MAX_SHUTTER_KEYS; i++) {
if ((Settings.shutter_button[i] & (1<<31)) && ((Settings.shutter_button[i] & 0x03) == shutter_index)) {
shutter_index_num_buttons++;
}
}
if ((buttonState == SHT_PRESSED_MULTI_SIMULTANEOUS) || ((shutter_index_num_buttons==1) && (buttonState == SHT_PRESSED_MULTI))){
// 5x..7x && no SetOption1 (0) checked above
// simultaneous or stand alone button press 5x, 6x, 7x detected
char scmnd[20];
snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_WIFICONFIG " 2"));
ExecuteCommand(scmnd, SRC_BUTTON);
return;
} else if ((buttonState == SHT_PRESSED_EXT_HOLD_SIMULTANEOUS) || ((shutter_index_num_buttons==1) && (buttonState == SHT_PRESSED_EXT_HOLD))){
// no SetOption1 (0) checked above
// simultaneous or stand alone button extended hold detected
char scmnd[20];
snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_RESET " 1"));
ExecuteCommand(scmnd, SRC_BUTTON);
return;
}
}
if (buttonState <= SHT_PRESSED_IMMEDIATE) {
if (Settings.shutter_startrelay[shutter_index] && Settings.shutter_startrelay[shutter_index] <9) {
uint8_t pos_press_index = (buttonState == SHT_PRESSED_HOLD) ? 3 : (press_index-1);
if (pos_press_index>3) pos_press_index=3;
AddLog_P(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d, Button %d = %d (single=1, double=2, tripple=3, hold=4)"), shutter_index+1, button_index+1, pos_press_index+1);
XdrvMailbox.index = shutter_index +1;
TasmotaGlobal.last_source = SRC_BUTTON;
XdrvMailbox.data_len = 0;
char databuf[1] = "";
XdrvMailbox.data = databuf;
XdrvMailbox.command = NULL;
if (buttonState == SHT_PRESSED_IMMEDIATE) {
XdrvMailbox.payload = XdrvMailbox.index;
CmndShutterStop();
} else {
uint8_t position = (Settings.shutter_button[button_index]>>(6*pos_press_index + 2)) & 0x03f;
if (position) {
if (Shutter[shutter_index].direction) {
XdrvMailbox.payload = XdrvMailbox.index;
CmndShutterStop();
} else {
XdrvMailbox.payload = position = (position-1)<<1;
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d -> %d"), shutter_index+1, position);
if (102 == position) {
XdrvMailbox.payload = XdrvMailbox.index;
CmndShutterToggle();
} else {
CmndShutterPosition();
}
if (Settings.shutter_button[button_index] & ((0x01<<26)<<pos_press_index)) {
// MQTT broadcast to grouptopic
char scommand[CMDSZ];
char stopic[TOPSZ];
for (uint32_t i = 0; i < MAX_SHUTTERS; i++) {
if ((i==shutter_index) || (Settings.shutter_button[button_index] & (0x01<<30))) {
snprintf_P(scommand, sizeof(scommand),PSTR("ShutterPosition%d"), i+1);
GetGroupTopic_P(stopic, scommand, SET_MQTT_GRP_TOPIC);
Response_P("%d", position);
MqttPublish(stopic, false);
}
} // for (uint32_t)
} // if (Settings.shutter)
} // ende else
} // if (position)
} // end else
} // if if (Settings.shutter_startrelay[shutter_index]
}
Response_P(PSTR("{"));
ResponseAppend_P(JSON_SHUTTER_BUTTON, shutter_index+1, (buttonState <= SHT_PRESSED_EXT_HOLD) ? (button_index+1) : 0, press_index);
ResponseJsonEnd();
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_PRFX_SHUTTER));
}
}
void ShutterSetPosition(uint32_t device, uint32_t position)
{
char svalue[32]; // Command and number parameter
snprintf_P(svalue, sizeof(svalue), PSTR(D_PRFX_SHUTTER D_CMND_SHUTTER_POSITION "%d %d"), device, position);
ExecuteCommand(svalue, SRC_SHUTTER);
}
void ShutterToggle(bool dir)
{
AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Payload toggle: %d, i %d, dir %d, lastdir %d"), XdrvMailbox.payload, XdrvMailbox.index, dir, Shutter[XdrvMailbox.index-1].lastdirection);
if ((1 == XdrvMailbox.index) && (XdrvMailbox.payload != -99)) {
XdrvMailbox.index = XdrvMailbox.payload;
}
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
uint32_t index = XdrvMailbox.index-1;
if (dir) {
XdrvMailbox.payload = (Shutter[index].direction==0 ? ((Shutter[index].lastdirection > 0) ? 0 : 100) : (Shutter[index].direction > 0) ? 0 : 100);
}
else {
XdrvMailbox.payload = (50 < ShutterRealToPercentPosition(Shutter[index].real_position, index)) ? 0 : 100;
}
XdrvMailbox.data_len = 0;
TasmotaGlobal.last_source = SRC_WEBGUI;
CmndShutterPosition();
}
}
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
void CmndShutterOpen(void)
{
//AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Payload open: %d, i %d"), XdrvMailbox.payload, XdrvMailbox.index);
if ((1 == XdrvMailbox.index) && (XdrvMailbox.payload != -99)) {
XdrvMailbox.index = XdrvMailbox.payload;
}
XdrvMailbox.payload = 100;
TasmotaGlobal.last_source = SRC_WEBGUI;
CmndShutterPosition();
}
void CmndShutterStopOpen(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
uint32_t index = XdrvMailbox.index-1;
if (Shutter[index].direction) {
CmndShutterStop();
} else {
CmndShutterOpen();
}
}
}
void CmndShutterClose(void)
{
//AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Payload close: %d, i %d"), XdrvMailbox.payload, XdrvMailbox.index);
if ((1 == XdrvMailbox.index) && (XdrvMailbox.payload != -99)) {
XdrvMailbox.index = XdrvMailbox.payload;
}
XdrvMailbox.payload = 0;
XdrvMailbox.data_len = 0;
TasmotaGlobal.last_source = SRC_WEBGUI;
CmndShutterPosition();
}
void CmndShutterStopClose(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
uint32_t index = XdrvMailbox.index-1;
if (Shutter[index].direction) {
CmndShutterStop();
} else {
CmndShutterClose();
}
}
}
void CmndShutterToggle(void)
{
ShutterToggle(false);
}
void CmndShutterToggleDir(void)
{
ShutterToggle(true);
}
void CmndShutterStopToggle(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
uint32_t index = XdrvMailbox.index-1;
if (Shutter[index].direction) {
CmndShutterStop();
} else {
CmndShutterToggle();
}
}
}
void CmndShutterStopToggleDir(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
uint32_t index = XdrvMailbox.index-1;
if (Shutter[index].direction) {
CmndShutterStop();
} else {
CmndShutterToggleDir();
}
}
}
void CmndShutterStop(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
if (!(Settings.shutter_options[XdrvMailbox.index-1] & 2)) {
if ((1 == XdrvMailbox.index) && (XdrvMailbox.payload != -99)) {
XdrvMailbox.index = XdrvMailbox.payload;
}
uint32_t i = XdrvMailbox.index -1;
if (Shutter[i].direction != 0) {
AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Stop moving %d: dir: %d"), XdrvMailbox.index, Shutter[i].direction);
Shutter[i].target_position = Shutter[i].real_position;
}
if (XdrvMailbox.command)
ResponseCmndDone();
ShutterUpdatePosition();
} else {
if (XdrvMailbox.command)
ResponseCmndIdxChar("Locked");
}
}
}
void CmndShutterIncDec(void)
{
//AddLog_P(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Change in: payload %s (%d), payload %d, idx %d, src %d"), XdrvMailbox.data , XdrvMailbox.data_len, XdrvMailbox.payload , XdrvMailbox.index, TasmotaGlobal.last_source );
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
if (XdrvMailbox.data_len > 0) {
XdrvMailbox.payload = ShutterRealToPercentPosition(Shutter[XdrvMailbox.index-1].target_position, XdrvMailbox.index-1)+XdrvMailbox.payload;
// limit position to boundaries
XdrvMailbox.payload = XdrvMailbox.payload < 0 ? 0 : (XdrvMailbox.payload > 100 ? 100 : XdrvMailbox.payload);
CmndShutterPosition();
}
}
}
void CmndShutterPosition(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
if (!(Settings.shutter_options[XdrvMailbox.index-1] & 2)) {
uint32_t index = XdrvMailbox.index-1;
//limit the payload
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Pos. in: payload %s (%d), payload %d, idx %d, src %d"), XdrvMailbox.data , XdrvMailbox.data_len, XdrvMailbox.payload , XdrvMailbox.index, TasmotaGlobal.last_source );
// value 0 with data_len > 0 can mean Open
// special handling fo UP,DOWN,TOGGLE,STOP command comming with payload -99
if ((XdrvMailbox.data_len > 1) && (XdrvMailbox.payload <= 0)) {
//UpperCase(XdrvMailbox.data, XdrvMailbox.data);
if (!strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_UP) || !strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_OPEN) || ((Shutter[index].direction==0) && !strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_STOPOPEN))) {
CmndShutterOpen();
return;
}
if (!strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_DOWN) || !strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_CLOSE) || ((Shutter[index].direction==0) && !strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_STOPCLOSE))) {
CmndShutterClose();
return;
}
if (!strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_TOGGLE)) {
CmndShutterToggle();
return;
}
if (!strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_TOGGLEDIR)) {
CmndShutterToggleDir();
return;
}
if (!strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_STOP) || ((Shutter[index].direction) && (!strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_STOPOPEN) || !strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_STOPCLOSE)))) {
XdrvMailbox.payload = -99;
CmndShutterStop();
return;
}
}
int8_t target_pos_percent = (XdrvMailbox.payload < 0) ? (XdrvMailbox.payload == -99 ? ShutterRealToPercentPosition(Shutter[index].real_position, index) : 0) : ((XdrvMailbox.payload > 100) ? 100 : XdrvMailbox.payload);
// webgui still send also on inverted shutter the native position.
target_pos_percent = ((Settings.shutter_options[index] & 1) && (SRC_WEBGUI != TasmotaGlobal.last_source)) ? 100 - target_pos_percent : target_pos_percent;
if (XdrvMailbox.payload != -99) {
//target_pos_percent = (Settings.shutter_options[index] & 1) ? 100 - target_pos_percent : target_pos_percent;
Shutter[index].target_position = ShutterPercentToRealPosition(target_pos_percent, index);
//Shutter[i].accelerator[index] = ShutterGlobal.open_velocity_max / ((Shutter[i].motordelay[index] > 0) ? Shutter[i].motordelay[index] : 1);
//Shutter[i].target_position[index] = XdrvMailbox.payload < 5 ? Settings.shuttercoeff[2][index] * XdrvMailbox.payload : Settings.shuttercoeff[1][index] * XdrvMailbox.payload + Settings.shuttercoeff[0,index];
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: lastsource %d:, real %d, target %d, payload %d"), TasmotaGlobal.last_source, Shutter[index].real_position ,Shutter[index].target_position,target_pos_percent);
}
if ( (target_pos_percent >= 0) && (target_pos_percent <= 100) && abs(Shutter[index].target_position - Shutter[index].real_position ) / Shutter[index].close_velocity > 2) {
if (Settings.shutter_options[index] & 4) {
if (0 == target_pos_percent) Shutter[index].target_position -= 1 * RESOLUTION * STEPS_PER_SECOND;
if (100 == target_pos_percent) Shutter[index].target_position += 1 * RESOLUTION * STEPS_PER_SECOND;
}
int8_t new_shutterdirection = Shutter[index].real_position < Shutter[index].target_position ? 1 : -1;
if (Shutter[index].direction == -new_shutterdirection) {
ShutterPowerOff(index);
}
if (Shutter[index].direction != new_shutterdirection) {
ShutterStartInit(index, new_shutterdirection, Shutter[index].target_position);
switch (ShutterGlobal.position_mode) {
case SHT_COUNTER:
case SHT_PWM_TIME:
case SHT_PWM_VALUE:
case SHT_TIME_UP_DOWN:
if (!ShutterGlobal.skip_relay_change) {
// Code for shutters with circuit safe configuration, switch the direction Relay
ExecuteCommandPowerShutter(Settings.shutter_startrelay[index] +1, new_shutterdirection == 1 ? 0 : 1, SRC_SHUTTER);
// power on
ExecuteCommandPowerShutter(Settings.shutter_startrelay[index], 1, SRC_SHUTTER);
}
//if (ShutterGlobal.position_mode != SHT_TIME_UP_DOWN) ExecuteCommandPowerShutter(Settings.shutter_startrelay[index]+2, 1, SRC_SHUTTER);
break;
case SHT_TIME:
if (!ShutterGlobal.skip_relay_change) {
if ( (TasmotaGlobal.power >> (Settings.shutter_startrelay[index] -1)) & 3 > 0 ) {
ExecuteCommandPowerShutter(Settings.shutter_startrelay[index] + (new_shutterdirection == 1 ? 1 : 0), Shutter[index].switch_mode == SHT_SWITCH ? 0 : 1, SRC_SHUTTER);
}
ExecuteCommandPowerShutter(Settings.shutter_startrelay[index] + (new_shutterdirection == 1 ? 0 : 1), 1, SRC_SHUTTER);
}
break;
case SHT_TIME_GARAGE:
if (!ShutterGlobal.skip_relay_change) {
if (new_shutterdirection == Shutter[index].lastdirection) {
AddLog(LOG_LEVEL_INFO, PSTR("SHT: Garage not move in this direction: %d"), Shutter[index].switch_mode == SHT_PULSE);
for (uint8_t k=0 ; k <= (uint8_t)(Shutter[index].switch_mode == SHT_PULSE) ; k++) {
ExecuteCommandPowerShutter(Settings.shutter_startrelay[index], 1, SRC_SHUTTER);
delay(500);
ExecuteCommandPowerShutter(Settings.shutter_startrelay[index], 0, SRC_SHUTTER);
delay(500);
}
// reset shutter time to avoid 2 seconds above count as runtime
Shutter[index].time = 0;
} // if (new_shutterdirection == Shutter[i].lastdirection[index])
ExecuteCommandPowerShutter(Settings.shutter_startrelay[index], 1, SRC_SHUTTER);
} // if (!ShutterGlobal.skip_relay_change)
break;
} // switch (ShutterGlobal.position_mode)
ShutterGlobal.RelayCurrentMask = 0;
} // if (Shutter[i].direction[index] != new_shutterdirection)
} else {
target_pos_percent = ShutterRealToPercentPosition(Shutter[index].real_position, index);
ShutterReportPosition(true, index);
}
XdrvMailbox.index = index +1; // Fix random index for ShutterClose
if (XdrvMailbox.command)
ResponseCmndIdxNumber((Settings.shutter_options[index] & 1) ? 100 - target_pos_percent : target_pos_percent);
} else {
ShutterReportPosition(true, MAX_SHUTTERS);
if (XdrvMailbox.command)
ResponseCmndIdxChar("Locked");
}
}
}
void CmndShutterStopPosition(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
uint32_t index = XdrvMailbox.index-1;
if (Shutter[index].direction) {
XdrvMailbox.payload = -99;
CmndShutterStop();
} else {
CmndShutterPosition();
}
}
}
void CmndShutterOpenTime(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
if (XdrvMailbox.data_len > 0) {
Settings.shutter_opentime[XdrvMailbox.index -1] = (uint16_t)(10 * CharToFloat(XdrvMailbox.data));
ShutterInit();
}
char time_chr[10];
dtostrfd((float)(Settings.shutter_opentime[XdrvMailbox.index -1]) / 10, 1, time_chr);
ResponseCmndIdxChar(time_chr);
}
}
void CmndShutterCloseTime(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
if (XdrvMailbox.data_len > 0) {
Settings.shutter_closetime[XdrvMailbox.index -1] = (uint16_t)(10 * CharToFloat(XdrvMailbox.data));
ShutterInit();
}
char time_chr[10];
dtostrfd((float)(Settings.shutter_closetime[XdrvMailbox.index -1]) / 10, 1, time_chr);
ResponseCmndIdxChar(time_chr);
}
}
void CmndShutterMotorDelay(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
if (XdrvMailbox.data_len > 0) {
Settings.shutter_motordelay[XdrvMailbox.index -1] = (uint16_t)(STEPS_PER_SECOND * CharToFloat(XdrvMailbox.data));
ShutterInit();
}
char time_chr[10];
dtostrfd((float)(Settings.shutter_motordelay[XdrvMailbox.index -1]) / STEPS_PER_SECOND, 2, time_chr);
ResponseCmndIdxChar(time_chr);
}
}
void CmndShutterMode(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= MAX_MODES)) {
ShutterGlobal.position_mode = XdrvMailbox.payload;
Settings.shutter_mode = XdrvMailbox.payload;
ShutterInit();
}
ResponseCmndNumber(ShutterGlobal.position_mode);
}
void CmndShutterRelay(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_SHUTTERS)) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 64)) {
Settings.shutter_startrelay[XdrvMailbox.index -1] = XdrvMailbox.payload;
if (XdrvMailbox.payload > 0) {
ShutterGlobal.RelayShutterMask |= 3 << (XdrvMailbox.payload - 1);
} else {
ShutterGlobal.RelayShutterMask ^= 3 << (Settings.shutter_startrelay[XdrvMailbox.index -1] - 1);
}
Settings.shutter_startrelay[XdrvMailbox.index -1] = XdrvMailbox.payload;
ShutterInit();
// if payload is 0 to disable the relay there must be a reboot. Otherwhise does not work
}
ResponseCmndIdxNumber(Settings.shutter_startrelay[XdrvMailbox.index -1]);
}
}
void CmndShutterButton(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_SHUTTERS)) {
uint32_t setting = 0;
// (setting>>31)&(0x01) : enabled
// (setting>>30)&(0x01) : mqtt broadcast to all index
// (setting>>29)&(0x01) : mqtt broadcast hold
// (setting>>28)&(0x01) : mqtt broadcast tripple press
// (setting>>27)&(0x01) : mqtt broadcast double press
// (setting>>26)&(0x01) : mqtt broadcast single press
// (setting>>20)&(0x3f) : shutter_position hold; 0 disabled, 1..101 == 0..100%, 102 == toggle
// (setting>>14)&(0x3f) : shutter_position tripple press 0 disabled, 1..101 == 0..100%, 102 == toggle
// (setting>> 8)&(0x3f) : shutter_position double press 0 disabled, 1..101 == 0..100%, 102 == toggle
// (setting>> 2)&(0x3f) : shutter_position single press 0 disabled, 1..101 == 0..100%, 102 == toggle
// (setting>> 0)&(0x03) : shutter_index
if (XdrvMailbox.data_len > 0) {
uint32_t i = 0;
uint32_t button_index = 0;
bool done = false;
bool isShortCommand = false;
char *str_ptr;
char data_copy[strlen(XdrvMailbox.data) +1];
strncpy(data_copy, XdrvMailbox.data, sizeof(data_copy)); // Duplicate data as strtok_r will modify it.
// Loop through the data string, splitting on ' ' seperators.
for (char *str = strtok_r(data_copy, " ", &str_ptr); str && i < (1+4+4+1); str = strtok_r(nullptr, " ", &str_ptr), i++) {
int field;
switch (str[0]) {
case '-':
field = -1;
break;
case 't':
field = 102;
break;
default:
field = atoi(str);
break;
}
switch (i) {
case 0:
if ((field >= -1) && (field<=4)) {
button_index = (field<=0)?(-1):field;
done = (button_index==-1);
} else
done = true;
break;
case 1:
if (!strcmp_P(str, PSTR("up"))) {
setting |= (((100>>1)+1)<<2) | (((50>>1)+1)<<8) | (((75>>1)+1)<<14) | (((100>>1)+1)<<20);
isShortCommand = true;
break;
} else if (!strcmp_P(str, PSTR("down"))) {
setting |= (((0>>1)+1)<<2) | (((50>>1)+1)<<8) | (((25>>1)+1)<<14) | (((0>>1)+1)<<20);
isShortCommand = true;
break;
} else if (!strcmp_P(str, PSTR("updown"))) {
setting |= (((100>>1)+1)<<2) | (((0>>1)+1)<<8) | (((50>>1)+1)<<14);
isShortCommand = true;
break;
} else if (!strcmp_P(str, PSTR("toggle"))) {
setting |= (((102>>1)+1)<<2) | (((50>>1)+1)<<8);
isShortCommand = true;
break;
}
case 2:
if (isShortCommand) {
if ((field==1) && (setting & (0x3F<<(2+6*3))))
// if short command up or down (hold press position set) then also enable MQTT broadcast
setting |= (0x3<<29);
done = true;
break;
}
case 3:
case 4:
if ((field >= -1) && (field<=102))
setting |= (((field>>1)+1)<<(i*6 + (2-6)));
break;
case 5:
case 6:
case 7:
case 8:
case 9:
if (field==1)
setting |= (1<<(i + (26-5)));
break;
}
if (done) break;
}
if (button_index) {
if (button_index==-1) {
// remove all buttons for this shutter
for (uint32_t i=0 ; i < MAX_SHUTTER_KEYS ; i++)
if ((Settings.shutter_button[i]&0x3) == (XdrvMailbox.index-1))
Settings.shutter_button[i] = 0;
} else {
if (setting) {
// anything was set
setting |= (1<<31);
setting |= (XdrvMailbox.index-1) & 0x3;
}
Settings.shutter_button[button_index-1] = setting;
}
}
}
char setting_chr[30*MAX_SHUTTER_KEYS] = "-", *setting_chr_ptr = setting_chr;
for (uint32_t i=0 ; i < MAX_SHUTTER_KEYS ; i++) {
setting = Settings.shutter_button[i];
if ((setting&(1<<31)) && ((setting&0x3) == (XdrvMailbox.index-1))) {
if (*setting_chr_ptr == 0)
setting_chr_ptr += sprintf_P(setting_chr_ptr, PSTR("|"));
setting_chr_ptr += snprintf_P(setting_chr_ptr, 2, PSTR("%d"), i+1);
for (uint32_t j=0 ; j < 4 ; j++) {
int8_t pos = (((setting>> (2+6*j))&(0x3f))-1)<<1;
if (0 <= pos)
if (102 == pos) {
setting_chr_ptr += sprintf_P(setting_chr_ptr, PSTR(" t"));
} else {
setting_chr_ptr += snprintf_P(setting_chr_ptr, 5, PSTR(" %d"), pos);
}
else
setting_chr_ptr += sprintf_P(setting_chr_ptr, PSTR(" -"));
}
for (uint32_t j=0 ; j < 5 ; j++) {
bool mqtt = ((setting>>(26+j))&(0x01)!=0);
if (mqtt)
setting_chr_ptr += sprintf_P(setting_chr_ptr, PSTR(" 1"));
else
setting_chr_ptr += sprintf_P(setting_chr_ptr, PSTR(" -"));
}
}
}
ResponseCmndIdxChar(setting_chr);
}
}
void CmndShutterSetHalfway(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) {
Settings.shutter_set50percent[XdrvMailbox.index -1] = (Settings.shutter_options[XdrvMailbox.index -1] & 1) ? 100 - XdrvMailbox.payload : XdrvMailbox.payload;
Settings.shuttercoeff[0][XdrvMailbox.index -1] = 0;
ShutterInit();
}
ResponseCmndIdxNumber((Settings.shutter_options[XdrvMailbox.index -1] & 1) ? 100 - Settings.shutter_set50percent[XdrvMailbox.index -1] : Settings.shutter_set50percent[XdrvMailbox.index -1]);
}
}
void CmndShutterFrequency(void)
{
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= 20000)) {
ShutterGlobal.open_velocity_max = XdrvMailbox.payload;
if (TasmotaGlobal.shutters_present < 4) {
Settings.shuttercoeff[4][3] = ShutterGlobal.open_velocity_max;
}
ShutterInit();
}
ResponseCmndNumber(ShutterGlobal.open_velocity_max);
}
void CmndShutterSetClose(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
Shutter[XdrvMailbox.index -1].real_position = 0;
ShutterStartInit(XdrvMailbox.index -1, 0, 0);
Settings.shutter_position[XdrvMailbox.index -1] = 0;
ResponseCmndIdxChar(D_CONFIGURATION_RESET);
}
}
void CmndShutterSetOpen(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
Shutter[XdrvMailbox.index -1].real_position = Shutter[XdrvMailbox.index -1].open_max;
ShutterStartInit(XdrvMailbox.index -1, 0, Shutter[XdrvMailbox.index -1].open_max);
Settings.shutter_position[XdrvMailbox.index -1] = 100;
ResponseCmndIdxChar(D_CONFIGURATION_RESET);
}
}
void CmndShutterPwmRange(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
if (XdrvMailbox.data_len > 0) {
uint8_t i = 0;
char *str_ptr;
char data_copy[strlen(XdrvMailbox.data) +1];
strncpy(data_copy, XdrvMailbox.data, sizeof(data_copy)); // Duplicate data as strtok_r will modify it.
// Loop through the data string, splitting on ' ' seperators.
for (char *str = strtok_r(data_copy, " ", &str_ptr); str && i < 2; str = strtok_r(nullptr, " ", &str_ptr), i++) {
uint16_t field = atoi(str);
// The fields in a data string can only range from 1-30000.
// and following value must be higher than previous one
if ((field <= 0) || (field > 1023)) {
break;
}
Settings.shutter_pwmrange[i][XdrvMailbox.index -1] = field;
}
AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Shtr%d Init1. pwmmin %d, pwmmax %d"), XdrvMailbox.index , Settings.shutter_pwmrange[0][XdrvMailbox.index -1], Settings.shutter_pwmrange[1][XdrvMailbox.index -1]);
ShutterInit();
ResponseCmndIdxChar(XdrvMailbox.data);
} else {
char setting_chr[30] = "0";
snprintf_P(setting_chr, sizeof(setting_chr), PSTR("Shutter %d: min:%d max:%d"), XdrvMailbox.index, Settings.shutter_pwmrange[0][XdrvMailbox.index -1], Settings.shutter_pwmrange[1][XdrvMailbox.index -1]);
ResponseCmndIdxChar(setting_chr);
}
}
}
void CmndShutterCalibration(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
if (XdrvMailbox.data_len > 0) {
uint8_t i = 0;
char *str_ptr;
char data_copy[strlen(XdrvMailbox.data) +1];
strncpy(data_copy, XdrvMailbox.data, sizeof(data_copy)); // Duplicate data as strtok_r will modify it.
// Loop through the data string, splitting on ' ' seperators.
for (char *str = strtok_r(data_copy, " ", &str_ptr); str && i < 5; str = strtok_r(nullptr, " ", &str_ptr), i++) {
int field = atoi(str);
// The fields in a data string can only range from 1-30000.
// and following value must be higher than previous one
if ((field <= 0) || (field > 30000) || ( (i>0) && (field <= messwerte[i-1]) ) ) {
break;
}
messwerte[i] = field;
}
Settings.shutter_set50percent[XdrvMailbox.index -1] = 50;
for (i = 0; i < 5; i++) {
Settings.shuttercoeff[i][XdrvMailbox.index -1] = SHT_DIV_ROUND((uint32_t)messwerte[i] * 1000, messwerte[4]);
AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Shuttercoeff %d, i %d, Value %d, MeasuredValue %d"), i,XdrvMailbox.index -1,Settings.shuttercoeff[i][XdrvMailbox.index -1], messwerte[i]);
}
ShutterInit();
ResponseCmndIdxChar(XdrvMailbox.data);
} else {
char setting_chr[30] = "0";
snprintf_P(setting_chr, sizeof(setting_chr), PSTR("%d %d %d %d %d"), Settings.shuttercoeff[0][XdrvMailbox.index -1], Settings.shuttercoeff[1][XdrvMailbox.index -1], Settings.shuttercoeff[2][XdrvMailbox.index -1], Settings.shuttercoeff[3][XdrvMailbox.index -1], Settings.shuttercoeff[4][XdrvMailbox.index -1]);
ResponseCmndIdxChar(setting_chr);
}
}
}
void ShutterOptionsSetHelper(uint16_t option){
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
if (XdrvMailbox.payload == 0) {
Settings.shutter_options[XdrvMailbox.index -1] &= ~(option);
} else if (XdrvMailbox.payload == 1) {
Settings.shutter_options[XdrvMailbox.index -1] |= (option);
}
ResponseCmndIdxNumber((Settings.shutter_options[XdrvMailbox.index -1] & option) ? 1 : 0);
}
}
void CmndShutterInvert(void) {
ShutterOptionsSetHelper(1);
}
void CmndShutterLock(void) {
ShutterOptionsSetHelper(2);
}
void CmndShutterEnableEndStopTime(void) {
ShutterOptionsSetHelper(4);
}
void CmndShutterInvertWebButtons(void) {
ShutterOptionsSetHelper(8);
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xdrv27(uint8_t function)
{
bool result = false;
if (Settings.flag3.shutter_mode) { // SetOption80 - Enable shutter support
switch (function) {
case FUNC_PRE_INIT:
ShutterInit();
break;
case FUNC_EVERY_50_MSECOND:
ShutterUpdatePosition();
break;
case FUNC_EVERY_SECOND:
//case FUNC_EVERY_250_MSECOND:
ShutterReportPosition(false, MAX_SHUTTERS);
break;
case FUNC_COMMAND:
result = DecodeCommand(kShutterCommands, ShutterCommand);
break;
case FUNC_JSON_APPEND:
for (uint8_t i = 0; i < TasmotaGlobal.shutters_present; i++) {
uint8_t position = (Settings.shutter_options[i] & 1) ? 100 - Settings.shutter_position[i] : Settings.shutter_position[i];
uint8_t target = (Settings.shutter_options[i] & 1) ? 100 - ShutterRealToPercentPosition(Shutter[i].target_position, i) : ShutterRealToPercentPosition(Shutter[i].target_position, i);
ResponseAppend_P(",");
ResponseAppend_P(JSON_SHUTTER_POS, i+1, position, Shutter[i].direction,target);
#ifdef USE_DOMOTICZ
if ((0 == TasmotaGlobal.tele_period) && (0 == i)) {
DomoticzSensor(DZ_SHUTTER, position);
}
#endif // USE_DOMOTICZ
}
break;
case FUNC_SET_POWER:
char stemp1[10];
// extract the number of the relay that was switched and save for later in Update Position.
ShutterGlobal.RelayCurrentMask = XdrvMailbox.index ^ ShutterGlobal.RelayOldMask;
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Switched relay %d by %s"), ShutterGlobal.RelayCurrentMask,GetTextIndexed(stemp1, sizeof(stemp1), TasmotaGlobal.last_source, kCommandSource));
ShutterRelayChanged();
ShutterGlobal.RelayOldMask = XdrvMailbox.index;
break;
case FUNC_SET_DEVICE_POWER:
if (ShutterGlobal.skip_relay_change ) {
uint8_t i;
for (i = 0; i < TasmotaGlobal.devices_present; i++) {
if (ShutterGlobal.RelayCurrentMask &1) {
break;
}
ShutterGlobal.RelayCurrentMask >>= 1;
}
//AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Skip relay change %d"), i+1);
result = true;
ShutterGlobal.skip_relay_change = 0;
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Skipping switch off relay %d"), i);
ExecuteCommandPowerShutter(i+1, 0, SRC_SHUTTER);
}
break;
case FUNC_BUTTON_PRESSED:
if (Settings.shutter_button[XdrvMailbox.index] & (1<<31)) {
ShutterButtonHandler();
result = true;
}
break;
}
}
return result;
}
#endif //USE_SHUTTER
#ifdef SHUTTER_UNITTEST
void CmndShutterUnitTest(void) {
int16_t input_percent[10] = {-5,0,10,26,35,55,80,99,100,105};
int16_t output_percent[10] = {0,0,10,26,35,55,80,99,100,100};
uint32_t result_percent[2][2][10] = {{{0,0,24000,62400,84000,132000,192000,237600,240000,240000},
{0,0,360000,936000,1260000,1980000,2880000,3564000,3600000,3600000}},
{{0,0,76296,100000,113333,174299,205795,237983,240000,240000},
{0,0,1144444,1500000,1700000,2614488,3086929,3569748,3600000,3600000}}};
uint32_t result = 0;
char svalue[50]; // Command and number parameter
Settings.shuttercoeff[0][0] = 0;
for (uint8_t i=0; i<2 ; i++){
snprintf_P(svalue, sizeof(svalue), PSTR(D_PRFX_SHUTTER D_CMND_SHUTTER_OPENTIME "%d %d"), 1, 12);
ExecuteCommand(svalue, SRC_SHUTTER);
ShutterInit();
for (uint8_t j=0; j<2 ; j++){
for (uint8_t k=0; k<10 ; k++){
result += (result_percent[i][j][k] == ShutterPercentToRealPosition(input_percent[k] , 0) ? 0 : 1);
AddLog(LOG_LEVEL_ERROR, PSTR("SHT: ShutterPercentToRealPosition error %d: %d <-> %d"),result, ShutterPercentToRealPosition(input_percent[k] , 0), result_percent[i][j][k]);
}
snprintf_P(svalue, sizeof(svalue), PSTR(D_PRFX_SHUTTER D_CMND_SHUTTER_OPENTIME "%d %d"), 1, 180);
ExecuteCommand(svalue, SRC_SHUTTER);
}
snprintf_P(svalue, sizeof(svalue), PSTR(D_PRFX_SHUTTER D_CMND_SHUTTER_CLIBRATION "%d %s"), 1, "15 83 105 185 210");
ExecuteCommand(svalue, SRC_SHUTTER);
}
if (!result){
AddLog(LOG_LEVEL_ERROR, PSTR("SHT: ShutterPercentToRealPosition: PASS"));
} else {
AddLog(LOG_LEVEL_ERROR, PSTR("SHT: ShutterPercentToRealPosition: FAIL"));
}
Settings.shuttercoeff[0][0] = 0;
for (uint8_t i=0; i<2 ; i++){
snprintf_P(svalue, sizeof(svalue), PSTR(D_PRFX_SHUTTER D_CMND_SHUTTER_OPENTIME "%d %d"), 1, 12);
ExecuteCommand(svalue, SRC_SHUTTER);
ShutterInit();
for (uint8_t j=0; j<2 ; j++){
for (uint8_t k=0; k<10 ; k++){
result += (output_percent[k] == ShutterRealToPercentPosition(result_percent[i][j][k] , 0) ? 0 : 1);
AddLog(LOG_LEVEL_ERROR, PSTR("SHT: ShutterRealToPercentPosition error %d: %d <-> %d"),result, ShutterRealToPercentPosition(result_percent[i][j][k] , 0), output_percent[k]);
}
snprintf_P(svalue, sizeof(svalue), PSTR(D_PRFX_SHUTTER D_CMND_SHUTTER_OPENTIME "%d %d"), 1, 180);
ExecuteCommand(svalue, SRC_SHUTTER);
}
snprintf_P(svalue, sizeof(svalue), PSTR(D_PRFX_SHUTTER D_CMND_SHUTTER_CLIBRATION "%d %s"), 1, "15 83 105 185 210");
ExecuteCommand(svalue, SRC_SHUTTER);
}
if (!result){
AddLog(LOG_LEVEL_ERROR, PSTR("SHT: ShutterRealToPercentPosition: PASS"));
} else {
AddLog(LOG_LEVEL_ERROR, PSTR("SHT: ShutterRealToPercentPosition: FAIL"));
}
}
#else
void CmndShutterUnitTest(void) {}
#endif