This patch adds support to fsusermount for multiple block devices
(instead of just one). The maximum allowed is fixed at compile time by
the size of the fs_user_mount array accessed via MP_STATE_PORT, which
in turn is set by MICROPY_FATFS_VOLUMES.
With this patch, stmhal (which is still tightly coupled to fsusermount)
is also modified to support mounting multiple devices And the flash and
SD card are now just two block devices that are mounted at start up if
they exist (and they have special native code to make them more
efficient).
You can now create (singleton) objects representing the flash and SD
card, using:
flash = pyb.Flash()
sdcard = pyb.SDCard()
These objects provide the block protocol.
This enables MICROPY_HW_HAS_FLASH which got missed.
The HW has UART2 on the 401 connected to the STLINK procesor
which exposes it as USB serial. This connects that up so that
you can get a REPL using the USB serial.
If MICROPY_FATFS_MAX_SS is defined to power of 2 value between 1024 and
4096, support for dynamic sector size in FatFs will be enabled. Note
that FatFs reserves static buffer of MICROPY_FATFS_MAX_SS size for each
filesystem in use, so that value should be set sparingly.
Initial patch provided by @pfalcon.
The new block protocol is:
- readblocks(self, n, buf)
- writeblocks(self, n, buf)
- ioctl(self, cmd, arg)
The new ioctl method handles the old sync and count methods, as well as
a new "get sector size" method.
The old protocol is still supported, and used if the device doesn't have
the ioctl method.
Per the previously discussed plan. mount() still stays backward-compatible,
and new mkfs() is rought and takes more args than needed. But is a step
in a forward direction.
This allows you to pass a number (being an address) to a viper function
that expects a pointer, and also allows casting of integers to pointers
within viper functions.
This was actually the original behaviour, but it regressed due to native
type identifiers being promoted to 4 bits in width.
If MICROPY_VFS_FAT is defined, mp_type_fileio & mp_type_textio won't be
defined, as these may be alredy defined elsewhere. The idea is to have
compartmentalized VFS FatFs class, which can work in parallel with some
other "main" filesystem. E.g., for unix port, mp_type_fileio, etc. will
be defined for the main POSIX filesystem, while stmhal/file.c will be
a self-contained VFS file class.
Move definition of mp_builtin_open_obj to a separate module, then file.c
becomes more or less compartmentalized FatFs file class, which can be used
together with file class implementations for other (V)FSes.
This function computes (x**y)%z in an efficient way. For large arguments
this operation is otherwise not computable by doing x**y and then %z.
It's currently not used, but is added in case it's useful one day.
For these 3 bitwise operations there are now fast functions for
positive-only arguments, and general functions for arbitrary sign
arguments (the fast functions are the existing implementation).
By default the fast functions are not used (to save space) and instead
the general functions are used for all operations.
Enable MICROPY_OPT_MPZ_BITWISE to use the fast functions for positive
arguments.
Before this patch, the native types for uint and ptr/ptr8/ptr16/ptr32
all overlapped and it was possible to make a mistake in casting. Now,
these types are all separate and any coding mistakes will be raised
as runtime errors.
Eg: '{:{}}'.format(123, '>20')
@pohmelie was the original author of this patch, but @dpgeorge made
significant changes to reduce code size and improve efficiency.