2022-04-25 12:28:42 +01:00
|
|
|
import gc
|
|
|
|
import time
|
|
|
|
import math
|
|
|
|
from plasma import WS2812
|
|
|
|
from motor import Motor, motor2040
|
|
|
|
from encoder import Encoder, MMME_CPR
|
|
|
|
from pimoroni import Button, PID, REVERSED_DIR
|
|
|
|
|
|
|
|
"""
|
2022-04-26 12:52:28 +01:00
|
|
|
A demonstration of driving all four of Motor 2040's motor outputs between
|
2022-04-25 12:28:42 +01:00
|
|
|
positions, with the help of their attached encoders and PID control.
|
|
|
|
|
|
|
|
Press "Boot" to exit the program.
|
|
|
|
"""
|
|
|
|
|
|
|
|
GEAR_RATIO = 50 # The gear ratio of the motors
|
|
|
|
COUNTS_PER_REV = MMME_CPR * GEAR_RATIO # The counts per revolution of each motor's output shaft
|
|
|
|
|
|
|
|
SPEED_SCALE = 5.4 # The scaling to apply to each motor's speed to match its real-world speed
|
|
|
|
|
|
|
|
UPDATES = 100 # How many times to update the motor per second
|
|
|
|
UPDATE_RATE = 1 / UPDATES
|
|
|
|
TIME_FOR_EACH_MOVE = 2 # The time to travel between each value
|
|
|
|
UPDATES_PER_MOVE = TIME_FOR_EACH_MOVE * UPDATES
|
|
|
|
PRINT_DIVIDER = 4 # How many of the updates should be printed (i.e. 2 would be every other update)
|
|
|
|
|
|
|
|
# LED constant
|
2022-04-28 21:23:18 +01:00
|
|
|
BRIGHTNESS = 0.4 # The brightness of the RGB LED
|
2022-04-25 12:28:42 +01:00
|
|
|
|
|
|
|
# PID values
|
|
|
|
POS_KP = 0.14 # Position proportional (P) gain
|
|
|
|
POS_KI = 0.0 # Position integral (I) gain
|
|
|
|
POS_KD = 0.0022 # Position derivative (D) gain
|
|
|
|
|
|
|
|
|
|
|
|
# Free up hardware resources ahead of creating a new Encoder
|
|
|
|
gc.collect()
|
|
|
|
|
|
|
|
# Create a list of motors with a given speed scale
|
|
|
|
MOTOR_PINS = [motor2040.MOTOR_A, motor2040.MOTOR_B, motor2040.MOTOR_C, motor2040.MOTOR_D]
|
2022-04-28 21:23:18 +01:00
|
|
|
motors = [Motor(pins, speed_scale=SPEED_SCALE) for pins in MOTOR_PINS]
|
2022-04-25 12:28:42 +01:00
|
|
|
|
|
|
|
# Create a list of encoders, using PIO 0, with the given counts per revolution
|
|
|
|
ENCODER_PINS = [motor2040.ENCODER_A, motor2040.ENCODER_B, motor2040.ENCODER_C, motor2040.ENCODER_D]
|
|
|
|
ENCODER_NAMES = ["A", "B", "C", "D"]
|
|
|
|
encoders = [Encoder(0, i, ENCODER_PINS[i], counts_per_rev=COUNTS_PER_REV, count_microsteps=True) for i in range(motor2040.NUM_MOTORS)]
|
|
|
|
|
|
|
|
# Reverse the direction of the B and D motors and encoders
|
|
|
|
motors[1].direction(REVERSED_DIR)
|
|
|
|
motors[3].direction(REVERSED_DIR)
|
|
|
|
encoders[1].direction(REVERSED_DIR)
|
|
|
|
encoders[3].direction(REVERSED_DIR)
|
|
|
|
|
|
|
|
# Create the LED, using PIO 1 and State Machine 0
|
|
|
|
led = WS2812(motor2040.NUM_LEDS, 1, 0, motor2040.LED_DATA)
|
|
|
|
|
|
|
|
# Create the user button
|
|
|
|
user_sw = Button(motor2040.USER_SW)
|
|
|
|
|
|
|
|
# Create PID objects for position control
|
|
|
|
pos_pids = [PID(POS_KP, POS_KI, POS_KD, UPDATE_RATE) for i in range(motor2040.NUM_MOTORS)]
|
|
|
|
|
|
|
|
# Start updating the LED
|
|
|
|
led.start()
|
|
|
|
|
2022-04-28 21:23:18 +01:00
|
|
|
# Enable all motors
|
2022-04-25 12:28:42 +01:00
|
|
|
for m in motors:
|
|
|
|
m.enable()
|
|
|
|
|
|
|
|
|
|
|
|
update = 0
|
|
|
|
print_count = 0
|
|
|
|
|
|
|
|
# Set the initial and end values
|
|
|
|
start_value = 0.0
|
|
|
|
end_value = 270.0
|
|
|
|
|
|
|
|
captures = [None] * motor2040.NUM_MOTORS
|
|
|
|
|
|
|
|
# Continually move the motor until the user button is pressed
|
|
|
|
while user_sw.raw() is not True:
|
|
|
|
|
|
|
|
# Capture the state of all the encoders
|
|
|
|
for i in range(motor2040.NUM_MOTORS):
|
|
|
|
captures[i] = encoders[i].capture()
|
|
|
|
|
|
|
|
# Calculate how far along this movement to be
|
|
|
|
percent_along = min(update / UPDATES_PER_MOVE, 1.0)
|
|
|
|
|
|
|
|
for i in range(motor2040.NUM_MOTORS):
|
|
|
|
# Move the motor between values using cosine
|
|
|
|
pos_pids[i].setpoint = (((-math.cos(percent_along * math.pi) + 1.0) / 2.0) * (end_value - start_value)) + start_value
|
|
|
|
|
|
|
|
# Calculate the velocity to move the motor closer to the position setpoint
|
|
|
|
vel = pos_pids[i].calculate(captures[i].degrees, captures[i].degrees_per_second)
|
|
|
|
|
|
|
|
# Set the new motor driving speed
|
|
|
|
motors[i].speed(vel)
|
|
|
|
|
|
|
|
# Update the LED
|
|
|
|
led.set_hsv(0, percent_along, 1.0, BRIGHTNESS)
|
|
|
|
|
|
|
|
# Print out the current motor values and their setpoints, but only on every multiple
|
|
|
|
if print_count == 0:
|
2022-04-28 21:23:18 +01:00
|
|
|
for i in range(motor2040.NUM_MOTORS):
|
2022-04-25 12:28:42 +01:00
|
|
|
print(ENCODER_NAMES[i], "=", captures[i].degrees, end=", ")
|
|
|
|
print()
|
|
|
|
|
|
|
|
# Increment the print count, and wrap it
|
|
|
|
print_count = (print_count + 1) % PRINT_DIVIDER
|
|
|
|
|
|
|
|
update += 1 # Move along in time
|
|
|
|
|
|
|
|
# Have we reached the end of this movement?
|
|
|
|
if update >= UPDATES_PER_MOVE:
|
|
|
|
update = 0 # Reset the counter
|
|
|
|
|
|
|
|
# Swap the start and end values
|
|
|
|
temp = start_value
|
|
|
|
start_value = end_value
|
|
|
|
end_value = temp
|
|
|
|
|
|
|
|
time.sleep(UPDATE_RATE)
|
|
|
|
|
|
|
|
# Stop all the motors
|
|
|
|
for m in motors:
|
|
|
|
m.disable()
|
|
|
|
|
|
|
|
# Turn off the LED bar
|
|
|
|
led.clear()
|