pimoroni-pico/micropython/examples/motor2040/quad_position_wave.py

131 lines
4.2 KiB
Python

import gc
import time
import math
from plasma import WS2812
from motor import Motor, motor2040
from encoder import Encoder, MMME_CPR
from pimoroni import Button, PID, REVERSED_DIR
"""
A demonstration of driving all four of Motor 2040's motor outputs between
positions, with the help of their attached encoders and PID control.
Press "Boot" to exit the program.
"""
GEAR_RATIO = 50 # The gear ratio of the motors
COUNTS_PER_REV = MMME_CPR * GEAR_RATIO # The counts per revolution of each motor's output shaft
SPEED_SCALE = 5.4 # The scaling to apply to each motor's speed to match its real-world speed
UPDATES = 100 # How many times to update the motor per second
UPDATE_RATE = 1 / UPDATES
TIME_FOR_EACH_MOVE = 2 # The time to travel between each value
UPDATES_PER_MOVE = TIME_FOR_EACH_MOVE * UPDATES
PRINT_DIVIDER = 4 # How many of the updates should be printed (i.e. 2 would be every other update)
# LED constant
BRIGHTNESS = 0.4 # The brightness of the RGB LED
# PID values
POS_KP = 0.14 # Position proportional (P) gain
POS_KI = 0.0 # Position integral (I) gain
POS_KD = 0.0022 # Position derivative (D) gain
# Free up hardware resources ahead of creating a new Encoder
gc.collect()
# Create a list of motors with a given speed scale
MOTOR_PINS = [motor2040.MOTOR_A, motor2040.MOTOR_B, motor2040.MOTOR_C, motor2040.MOTOR_D]
motors = [Motor(pins, speed_scale=SPEED_SCALE) for pins in MOTOR_PINS]
# Create a list of encoders, using PIO 0, with the given counts per revolution
ENCODER_PINS = [motor2040.ENCODER_A, motor2040.ENCODER_B, motor2040.ENCODER_C, motor2040.ENCODER_D]
ENCODER_NAMES = ["A", "B", "C", "D"]
encoders = [Encoder(0, i, ENCODER_PINS[i], counts_per_rev=COUNTS_PER_REV, count_microsteps=True) for i in range(motor2040.NUM_MOTORS)]
# Reverse the direction of the B and D motors and encoders
motors[1].direction(REVERSED_DIR)
motors[3].direction(REVERSED_DIR)
encoders[1].direction(REVERSED_DIR)
encoders[3].direction(REVERSED_DIR)
# Create the LED, using PIO 1 and State Machine 0
led = WS2812(motor2040.NUM_LEDS, 1, 0, motor2040.LED_DATA)
# Create the user button
user_sw = Button(motor2040.USER_SW)
# Create PID objects for position control
pos_pids = [PID(POS_KP, POS_KI, POS_KD, UPDATE_RATE) for i in range(motor2040.NUM_MOTORS)]
# Start updating the LED
led.start()
# Enable all motors
for m in motors:
m.enable()
update = 0
print_count = 0
# Set the initial and end values
start_value = 0.0
end_value = 270.0
captures = [None] * motor2040.NUM_MOTORS
# Continually move the motor until the user button is pressed
while user_sw.raw() is not True:
# Capture the state of all the encoders
for i in range(motor2040.NUM_MOTORS):
captures[i] = encoders[i].capture()
# Calculate how far along this movement to be
percent_along = min(update / UPDATES_PER_MOVE, 1.0)
for i in range(motor2040.NUM_MOTORS):
# Move the motor between values using cosine
pos_pids[i].setpoint = (((-math.cos(percent_along * math.pi) + 1.0) / 2.0) * (end_value - start_value)) + start_value
# Calculate the velocity to move the motor closer to the position setpoint
vel = pos_pids[i].calculate(captures[i].degrees, captures[i].degrees_per_second)
# Set the new motor driving speed
motors[i].speed(vel)
# Update the LED
led.set_hsv(0, percent_along, 1.0, BRIGHTNESS)
# Print out the current motor values and their setpoints, but only on every multiple
if print_count == 0:
for i in range(motor2040.NUM_MOTORS):
print(ENCODER_NAMES[i], "=", captures[i].degrees, end=", ")
print()
# Increment the print count, and wrap it
print_count = (print_count + 1) % PRINT_DIVIDER
update += 1 # Move along in time
# Have we reached the end of this movement?
if update >= UPDATES_PER_MOVE:
update = 0 # Reset the counter
# Swap the start and end values
temp = start_value
start_value = end_value
end_value = temp
time.sleep(UPDATE_RATE)
# Stop all the motors
for m in motors:
m.disable()
# Turn off the LED bar
led.clear()