Defensively tear down DMA/PIO so it's in a known good state upon (soft)reset.
Issue was a race condition with DMA interrupts firing and not being achknowledged, leaving a stuck raised IRQ.
The blocking wait for DMA transactions also exacerbated this, turning a borken DMA interrupt and blank screen into an unrecoverable hardlock.
...not that the blank screen was recoverable without a soft reset anyway!
Switch from 12-bit to 10-bit gamma to fit RGB into a uint32_t. Simplifies PIO and halves the RAM usage for F/B buffer.
Switch "flip" to *literally* swap the front and back buffers, and then asyncronously DMA the new back buffer into the front ready for the next draw.
Moves the 256 entry GAMMA table into pimoroni_common.
Should probably be added into a library so MicroPython is built with only one instance of the table.
Add the init required for the 320x240 2.0" LCD.
Add an option to set baudrate, 320x240 needs 74MHz for 60FPS
Add library and example for 320x240 2.0 LCD.
This covers an edge case where pixels are updated intermittently - such as the once that happens when clearing before a Python soft reset.
Under normal circumstances users should `start` the LED strip and allow it to continuously update.
We chased a bug with handling/clearing interrupts on Encoder into the depths of madness, finding that a Debug build would magically fix the bug.
Turns out it was probably just us being a little aggressive with the poor little MS51-based Encoder driver.
* Fix delays to be more delayey.
* Replace big 'ol loop and boolean with straight up checks and an early exit- the bit-addressed regs are never going to change
Adds an ifdef guard around `pio_sm_unclaim` that prevents it being called when MicroPython cleans up/finalizes classes.
For some reason this appeared to be causing a hardfault.
Library:
Includes classes for driving WS2812 and APA102 LEDs and defines for Plasma features.
Encoder Example:
Supports connecting a Rotary Encoder via the Qw'St connector.
Works with APA102 or WS281X pixels.
Pressing A will cycle between:
1. Colour change
2. Brightness change
3. Cycle delay
Pressing B will switch back into auto-cycle mode.
Turning the encoder at any time will switch out of auto cycle mode into parameter adjust mode.
Also includes a bugfix to Rotary Encoder for getting the interrupt correctly.
Rainbow Example:
Basic rainbow cycle, press B to speed up and A to slow down.
The BME68X library is *linked* against the MicroPython bindings, rather than compiled directly in.
This saves specifing the list of target files twice.
This changeset brings the BOSCH BME68X Sensor API library in as a submodule and makes it buildable with CMake.
A thin wrapper- the BME68X driver- provides simple init, configure, read_forced and read_parallel functions.
Two BME688 examples are available for forced-mode and parallel-mode operation.
"RGBLED" PWMs 3 pins as a single RGB LED and exposes methods to set the colour via HSV/RGB.
"Button" handles tracking the state and changed state of a single GPIO button, in addition to supporting auto-repeat for held-down buttons.