This code is intentionally written in C++ to illustrate the basics of driving HUB75 without being overly complicated to read and understand.
Tested on a 32x32 panel and a 64x64 "FM6126A" panel, for which this code includes a magic pair of register settings.
Add the init required for the 320x240 2.0" LCD.
Add an option to set baudrate, 320x240 needs 74MHz for 60FPS
Add library and example for 320x240 2.0 LCD.
Library:
Includes classes for driving WS2812 and APA102 LEDs and defines for Plasma features.
Encoder Example:
Supports connecting a Rotary Encoder via the Qw'St connector.
Works with APA102 or WS281X pixels.
Pressing A will cycle between:
1. Colour change
2. Brightness change
3. Cycle delay
Pressing B will switch back into auto-cycle mode.
Turning the encoder at any time will switch out of auto cycle mode into parameter adjust mode.
Also includes a bugfix to Rotary Encoder for getting the interrupt correctly.
Rainbow Example:
Basic rainbow cycle, press B to speed up and A to slow down.
The BME68X library is *linked* against the MicroPython bindings, rather than compiled directly in.
This saves specifing the list of target files twice.
This changeset brings the BOSCH BME68X Sensor API library in as a submodule and makes it buildable with CMake.
A thin wrapper- the BME68X driver- provides simple init, configure, read_forced and read_parallel functions.
Two BME688 examples are available for forced-mode and parallel-mode operation.
The switch to common I2C and common definitions for SPI had broken an edge case in Pico Explorer where no backlight pin is used.
The backlight pin was inadvertently set to the front Breakout Garden SPI slot default, which is pin 20- this also happens to be the I2C SDA pin for Pico Explorer, breaking I2C comms.
This fix adds a new special case board "PICO_EXPLORER_ONBOARD" so that ST7789 can be initialised without the backlight pin.
This will be useful for anyone using ST7789 without the rest of the Pico Explorer library, although it feels a little contrived.
Also switches ST7735 over to the common defines.
Rewrites the cursed Pico RGB Keypad code so that it can't hurt anyone else.
Turns out the whole loop could have been a bitwise operator.
The true lesson was the people we met along the way.
Removes all driver-specific SDA/SCL pin definitions and defaults.
Pin type is "uint" everywhere, but "PIN_UNUSED" is *int*_max for MicroPython compat. That's still a lot of pins!
Adds baudrate to the I2C class, and allows a driver (like Trackball) to check the baudrate is supported