This code is intentionally written in C++ to illustrate the basics of driving HUB75 without being overly complicated to read and understand.
Tested on a 32x32 panel and a 64x64 "FM6126A" panel, for which this code includes a magic pair of register settings.
Add the init required for the 320x240 2.0" LCD.
Add an option to set baudrate, 320x240 needs 74MHz for 60FPS
Add library and example for 320x240 2.0 LCD.
Library:
Includes classes for driving WS2812 and APA102 LEDs and defines for Plasma features.
Encoder Example:
Supports connecting a Rotary Encoder via the Qw'St connector.
Works with APA102 or WS281X pixels.
Pressing A will cycle between:
1. Colour change
2. Brightness change
3. Cycle delay
Pressing B will switch back into auto-cycle mode.
Turning the encoder at any time will switch out of auto cycle mode into parameter adjust mode.
Also includes a bugfix to Rotary Encoder for getting the interrupt correctly.
Rainbow Example:
Basic rainbow cycle, press B to speed up and A to slow down.
This changeset brings the BOSCH BME68X Sensor API library in as a submodule and makes it buildable with CMake.
A thin wrapper- the BME68X driver- provides simple init, configure, read_forced and read_parallel functions.
Two BME688 examples are available for forced-mode and parallel-mode operation.
* C driver for LTP305 breakout
* Micropython bindings for LTP305 breakout
* Micropython examples for dotmatrix
* C++ examples for dotmatrix
Co-authored-by: Phil Howard <phil@gadgetoid.com>
Add IS31FL3731 driver
Add RGBMatrix5x5 library and example
Add Matrix11x7 library and example
Co-authored-by: ZodiusInfuser <christopher.parrott2@gmail.com>