pimoroni-pico/drivers/st7789/st7789.cpp

346 lines
8.9 KiB
C++

#include "st7789.hpp"
#include <cstdlib>
#include <math.h>
namespace pimoroni {
uint8_t madctl;
uint16_t caset[2] = {0, 0};
uint16_t raset[2] = {0, 0};
enum MADCTL : uint8_t {
ROW_ORDER = 0b10000000,
COL_ORDER = 0b01000000,
SWAP_XY = 0b00100000, // AKA "MV"
SCAN_ORDER = 0b00010000,
RGB = 0b00001000,
HORIZ_ORDER = 0b00000100
};
enum reg {
SWRESET = 0x01,
TEOFF = 0x34,
TEON = 0x35,
MADCTL = 0x36,
COLMOD = 0x3A,
GCTRL = 0xB7,
VCOMS = 0xBB,
LCMCTRL = 0xC0,
VDVVRHEN = 0xC2,
VRHS = 0xC3,
VDVS = 0xC4,
FRCTRL2 = 0xC6,
PWCTRL1 = 0xD0,
PORCTRL = 0xB2,
GMCTRP1 = 0xE0,
GMCTRN1 = 0xE1,
INVOFF = 0x20,
SLPOUT = 0x11,
DISPON = 0x29,
GAMSET = 0x26,
DISPOFF = 0x28,
RAMWR = 0x2C,
INVON = 0x21,
CASET = 0x2A,
RASET = 0x2B,
PWMFRSEL = 0xCC
};
void ST7789::init() {
command(reg::SWRESET);
sleep_ms(150);
// Common init
command(reg::TEON); // enable frame sync signal if used
command(reg::COLMOD, 1, "\x05"); // 16 bits per pixel
command(reg::PORCTRL, 5, "\x0c\x0c\x00\x33\x33");
command(reg::LCMCTRL, 1, "\x2c");
command(reg::VDVVRHEN, 1, "\x01");
command(reg::VRHS, 1, "\x12");
command(reg::VDVS, 1, "\x20");
command(reg::PWCTRL1, 2, "\xa4\xa1");
command(reg::FRCTRL2, 1, "\x0f");
if(width == 240 && height == 240) {
command(reg::GCTRL, 1, "\x14");
command(reg::VCOMS, 1, "\x37");
command(reg::GMCTRP1, 14, "\xD0\x04\x0D\x11\x13\x2B\x3F\x54\x4C\x18\x0D\x0B\x1F\x23");
command(reg::GMCTRN1, 14, "\xD0\x04\x0C\x11\x13\x2C\x3F\x44\x51\x2F\x1F\x1F\x20\x23");
}
if(width == 320 && height == 240) {
command(reg::GCTRL, 1, "\x35");
command(reg::VCOMS, 1, "\x1f");
command(0xd6, 1, "\xa1"); // ???
command(reg::GMCTRP1, 14, "\xD0\x08\x11\x08\x0C\x15\x39\x33\x50\x36\x13\x14\x29\x2D");
command(reg::GMCTRN1, 14, "\xD0\x08\x10\x08\x06\x06\x39\x44\x51\x0B\x16\x14\x2F\x31");
}
command(reg::INVON); // set inversion mode
command(reg::SLPOUT); // leave sleep mode
command(reg::DISPON); // turn display on
sleep_ms(100);
configure_display(rotation);
if(bl != PIN_UNUSED) {
//update(); // Send the new buffer to the display to clear any previous content
sleep_ms(50); // Wait for the update to apply
set_backlight(255); // Turn backlight on now surprises have passed
}
}
void ST7789::configure_display(Rotation rotate) {
bool rotate180 = rotate == ROTATE_180 || rotate == ROTATE_90;
if(rotate == ROTATE_90 || rotate == ROTATE_270) {
std::swap(width, height);
}
// 240x240 Square and Round LCD Breakouts
if(width == 240 && height == 240) {
caset[0] = 0;
caset[1] = 239;
if(round) {
raset[0] = 40;
raset[1] = 279;
} else {
raset[0] = rotate180 ? 80 : 0;
raset[1] = rotate180 ? 329 : 239;
}
madctl = rotate180 ? (MADCTL::COL_ORDER | MADCTL::ROW_ORDER) : 0;
if (rotate == ROTATE_90) madctl |= MADCTL::SWAP_XY;
madctl |= MADCTL::HORIZ_ORDER;
}
// Pico Display
if(width == 240 && height == 135) {
caset[0] = 40; // 240 cols
caset[1] = 279;
raset[0] = 53; // 135 rows
raset[1] = 187;
madctl = rotate180 ? MADCTL::ROW_ORDER : MADCTL::COL_ORDER;
madctl |= MADCTL::SWAP_XY | MADCTL::SCAN_ORDER;
}
// Pico Display at 90 degree rotation
if(width == 135 && height == 240) {
caset[0] = 52; // 135 cols
caset[1] = 186;
raset[0] = 40; // 240 rows
raset[1] = 279;
madctl = rotate180 ? (MADCTL::COL_ORDER | MADCTL::ROW_ORDER) : 0;
}
// Pico Display 2.0
if(width == 320 && height == 240) {
caset[0] = 0;
caset[1] = 319;
raset[0] = 0;
raset[1] = 239;
madctl = rotate180 ? MADCTL::ROW_ORDER : MADCTL::COL_ORDER;
madctl |= MADCTL::SWAP_XY | MADCTL::SCAN_ORDER;
}
// Pico Display 2.0 at 90 degree rotation
if(width == 240 && height == 320) {
caset[0] = 0;
caset[1] = 239;
raset[0] = 0;
raset[1] = 319;
madctl = rotate180 ? (MADCTL::COL_ORDER | MADCTL::ROW_ORDER) : 0;
}
// Byte swap the 16bit rows/cols values
caset[0] = __builtin_bswap16(caset[0]);
caset[1] = __builtin_bswap16(caset[1]);
raset[0] = __builtin_bswap16(raset[0]);
raset[1] = __builtin_bswap16(raset[1]);
command(reg::CASET, 4, (char *)caset);
command(reg::RASET, 4, (char *)raset);
command(reg::MADCTL, 1, (char *)&madctl);
}
void ST7789::write_blocking_parallel(const uint8_t *src, size_t len) {
uint32_t mask = 0xff << d0;
while(len--) {
gpio_put(wr_sck, false);
uint8_t v = *src++;
gpio_put_masked(mask, v << d0);
asm("nop;");
gpio_put(wr_sck, true);
asm("nop;");
}
}
void ST7789::command(uint8_t command, size_t len, const char *data) {
gpio_put(dc, 0); // command mode
gpio_put(cs, 0);
if(spi) {
spi_write_blocking(spi, &command, 1);
} else {
write_blocking_parallel(&command, 1);
}
if(data) {
gpio_put(dc, 1); // data mode
if(spi) {
spi_write_blocking(spi, (const uint8_t*)data, len);
} else {
write_blocking_parallel((const uint8_t*)data, len);
}
}
gpio_put(cs, 1);
}
void ST7789::update(PicoGraphics<PenRGB565> *graphics) {
command(reg::RAMWR, width * height * sizeof(uint16_t), (const char*)graphics->get_data());
}
void ST7789::update(PicoGraphics<PenRGB332> *graphics) {
uint8_t command = reg::RAMWR;
gpio_put(dc, 0); // command mode
gpio_put(cs, 0);
if(spi) {
spi_write_blocking(spi, &command, 1);
} else {
write_blocking_parallel(&command, 1);
}
gpio_put(dc, 1); // data mode
uint16_t row_buf[width];
for(auto y = 0u; y < height; y++) {
graphics->get_data(y, &row_buf);
// TODO: Add DMA->SPI / PIO while we prep the next row
if(spi) {
spi_write_blocking(spi, (const uint8_t*)row_buf, width * sizeof(uint16_t));
} else {
write_blocking_parallel((const uint8_t*)row_buf, width * sizeof(uint16_t));
}
}
gpio_put(cs, 1);
}
void ST7789::update(PicoGraphics<PenP8> *graphics) {
uint8_t command = reg::RAMWR;
gpio_put(dc, 0); // command mode
gpio_put(cs, 0);
if(spi) {
spi_write_blocking(spi, &command, 1);
} else {
write_blocking_parallel(&command, 1);
}
gpio_put(dc, 1); // data mode
uint16_t row_buf[width];
for(auto y = 0u; y < height; y++) {
graphics->get_data(y, &row_buf);
// TODO: Add DMA->SPI / PIO while we prep the next row
if(spi) {
spi_write_blocking(spi, (const uint8_t*)row_buf, width * sizeof(uint16_t));
} else {
write_blocking_parallel((const uint8_t*)row_buf, width * sizeof(uint16_t));
}
}
gpio_put(cs, 1);
}
void ST7789::update(PicoGraphics<PenP4> *graphics) {
uint8_t command = reg::RAMWR;
gpio_put(dc, 0); // command mode
gpio_put(cs, 0);
if(spi) {
spi_write_blocking(spi, &command, 1);
} else {
write_blocking_parallel(&command, 1);
}
gpio_put(dc, 1); // data mode
uint16_t row_buf[width];
for(auto y = 0u; y < height; y++) {
graphics->get_data(y, &row_buf);
// TODO: Add DMA->SPI / PIO while we prep the next row
if(spi) {
spi_write_blocking(spi, (const uint8_t*)row_buf, width * sizeof(uint16_t));
} else {
write_blocking_parallel((const uint8_t*)row_buf, width * sizeof(uint16_t));
}
}
gpio_put(cs, 1);
}
/*
// Native 16-bit framebuffer update
void ST7789::update() {
command(reg::RAMWR, width * height * sizeof(uint16_t), (const char*)frame_buffer);
}
// 8-bit framebuffer with palette conversion update
void ST7789::update(uint16_t *palette) {
uint8_t command = reg::RAMWR;
uint16_t row[width];
gpio_put(dc, 0); // command mode
gpio_put(cs, 0);
if(spi) {
spi_write_blocking(spi, &command, 1);
} else {
write_blocking_parallel(&command, 1);
}
gpio_put(dc, 1); // data mode
for(auto y = 0u; y < height; y++) {
for(auto x = 0u; x < width; x++) {
auto i = y * width + x;
row[x] = palette[((uint8_t *)frame_buffer)[i]];
}
// TODO: Add DMA->SPI / PIO while we prep the next row
if(spi) {
spi_write_blocking(spi, (const uint8_t*)row, width * sizeof(uint16_t));
} else {
write_blocking_parallel((const uint8_t*)row, width * sizeof(uint16_t));
}
}
gpio_put(cs, 1);
}
*/
void ST7789::set_backlight(uint8_t brightness) {
// gamma correct the provided 0-255 brightness value onto a
// 0-65535 range for the pwm counter
float gamma = 2.8;
uint16_t value = (uint16_t)(pow((float)(brightness) / 255.0f, gamma) * 65535.0f + 0.5f);
pwm_set_gpio_level(bl, value);
}
}