112 lines
3.0 KiB
C++
112 lines
3.0 KiB
C++
#include <string.h>
|
|
#include <math.h>
|
|
#include <vector>
|
|
#include <cstdlib>
|
|
|
|
#include "pico_display_2.hpp"
|
|
|
|
using namespace pimoroni;
|
|
|
|
uint16_t buffer[PicoDisplay2::WIDTH * PicoDisplay2::HEIGHT];
|
|
PicoDisplay2 pico_display(buffer);
|
|
|
|
// HSV Conversion expects float inputs in the range of 0.00-1.00 for each channel
|
|
// Outputs are rgb in the range 0-255 for each channel
|
|
void from_hsv(float h, float s, float v, uint8_t &r, uint8_t &g, uint8_t &b) {
|
|
float i = floor(h * 6.0f);
|
|
float f = h * 6.0f - i;
|
|
v *= 255.0f;
|
|
uint8_t p = v * (1.0f - s);
|
|
uint8_t q = v * (1.0f - f * s);
|
|
uint8_t t = v * (1.0f - (1.0f - f) * s);
|
|
|
|
switch (int(i) % 6) {
|
|
case 0: r = v; g = t; b = p; break;
|
|
case 1: r = q; g = v; b = p; break;
|
|
case 2: r = p; g = v; b = t; break;
|
|
case 3: r = p; g = q; b = v; break;
|
|
case 4: r = t; g = p; b = v; break;
|
|
case 5: r = v; g = p; b = q; break;
|
|
}
|
|
}
|
|
|
|
int main() {
|
|
pico_display.init();
|
|
pico_display.set_backlight(255);
|
|
|
|
struct pt {
|
|
float x;
|
|
float y;
|
|
uint8_t r;
|
|
float dx;
|
|
float dy;
|
|
uint16_t pen;
|
|
};
|
|
|
|
std::vector<pt> shapes;
|
|
for(int i = 0; i < 100; i++) {
|
|
pt shape;
|
|
shape.x = rand() % pico_display.bounds.w;
|
|
shape.y = rand() % pico_display.bounds.h;
|
|
shape.r = (rand() % 10) + 3;
|
|
shape.dx = float(rand() % 255) / 64.0f;
|
|
shape.dy = float(rand() % 255) / 64.0f;
|
|
shape.pen = pico_display.create_pen(rand() % 255, rand() % 255, rand() % 255);
|
|
shapes.push_back(shape);
|
|
}
|
|
|
|
Point text_location(0, 0);
|
|
|
|
while(true) {
|
|
if(pico_display.is_pressed(pico_display.A)) text_location.x -= 1;
|
|
if(pico_display.is_pressed(pico_display.B)) text_location.x += 1;
|
|
|
|
if(pico_display.is_pressed(pico_display.X)) text_location.y -= 1;
|
|
if(pico_display.is_pressed(pico_display.Y)) text_location.y += 1;
|
|
|
|
pico_display.set_pen(120, 40, 60);
|
|
pico_display.clear();
|
|
|
|
for(auto &shape : shapes) {
|
|
shape.x += shape.dx;
|
|
shape.y += shape.dy;
|
|
if((shape.x - shape.r) < 0) {
|
|
shape.dx *= -1;
|
|
shape.x = shape.r;
|
|
}
|
|
if((shape.x + shape.r) >= pico_display.bounds.w) {
|
|
shape.dx *= -1;
|
|
shape.x = pico_display.bounds.w - shape.r;
|
|
}
|
|
if((shape.y - shape.r) < 0) {
|
|
shape.dy *= -1;
|
|
shape.y = shape.r;
|
|
}
|
|
if((shape.y + shape.r) >= pico_display.bounds.h) {
|
|
shape.dy *= -1;
|
|
shape.y = pico_display.bounds.h - shape.r;
|
|
}
|
|
|
|
pico_display.set_pen(shape.pen);
|
|
pico_display.circle(Point(shape.x, shape.y), shape.r);
|
|
|
|
}
|
|
|
|
// Since HSV takes a float from 0.0 to 1.0 indicating hue,
|
|
// then we can divide millis by the number of milliseconds
|
|
// we want a full colour cycle to take. 5000 = 5 sec.
|
|
uint8_t r = 0, g = 0, b = 0;
|
|
from_hsv((float)millis() / 5000.0f, 1.0f, 0.5f + sinf(millis() / 100.0f / 3.14159f) * 0.5f, r, g, b);
|
|
pico_display.set_led(r, g, b);
|
|
|
|
|
|
pico_display.set_pen(255, 255, 255);
|
|
pico_display.text("Hello World", text_location, 320);
|
|
|
|
// update screen
|
|
pico_display.update();
|
|
}
|
|
|
|
return 0;
|
|
}
|