tailscale/control/controlclient/netmap.go

394 lines
10 KiB
Go
Raw Normal View History

// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package controlclient
import (
"encoding/json"
"fmt"
"net"
"reflect"
"strconv"
"strings"
"time"
"inet.af/netaddr"
"tailscale.com/net/tsaddr"
"tailscale.com/tailcfg"
"tailscale.com/types/logger"
"tailscale.com/types/wgkey"
"tailscale.com/wgengine/filter"
"tailscale.com/wgengine/wgcfg"
)
type NetworkMap struct {
// Core networking
SelfNode *tailcfg.Node
NodeKey tailcfg.NodeKey
PrivateKey wgkey.Private
Expiry time.Time
// Name is the DNS name assigned to this node.
Name string
Addresses []netaddr.IPPrefix
LocalPort uint16 // used for debugging
MachineStatus tailcfg.MachineStatus
MachineKey tailcfg.MachineKey
Peers []*tailcfg.Node // sorted by Node.ID
DNS tailcfg.DNSConfig
Hostinfo tailcfg.Hostinfo
PacketFilter []filter.Match
// CollectServices reports whether this node's Tailnet has
// requested that info about services be included in HostInfo.
// If set, Hostinfo.ShieldsUp blocks services collection; that
// takes precedence over this field.
CollectServices bool
// DERPMap is the last DERP server map received. It's reused
// between updates and should not be modified.
DERPMap *tailcfg.DERPMap
// Debug knobs from control server for debug or feature gating.
Debug *tailcfg.Debug
// ACLs
User tailcfg.UserID
Domain string
// TODO(crawshaw): reduce UserProfiles to []tailcfg.UserProfile?
// There are lots of ways to slice this data, leave it up to users.
UserProfiles map[tailcfg.UserID]tailcfg.UserProfile
// TODO(crawshaw): Groups []tailcfg.Group
// TODO(crawshaw): Capabilities []tailcfg.Capability
}
// MagicDNSSuffix returns the domain's MagicDNS suffix (even if
// MagicDNS isn't necessarily in use).
//
// It will neither start nor end with a period.
func (nm *NetworkMap) MagicDNSSuffix() string {
name := strings.Trim(nm.Name, ".")
if i := strings.Index(name, "."); i != -1 {
name = name[i+1:]
}
return name
}
func (nm *NetworkMap) String() string {
return nm.Concise()
}
func (nm *NetworkMap) Concise() string {
buf := new(strings.Builder)
nm.printConciseHeader(buf)
for _, p := range nm.Peers {
printPeerConcise(buf, p)
}
return buf.String()
}
// printConciseHeader prints a concise header line representing nm to buf.
//
// If this function is changed to access different fields of nm, keep
// in equalConciseHeader in sync.
func (nm *NetworkMap) printConciseHeader(buf *strings.Builder) {
fmt.Fprintf(buf, "netmap: self: %v auth=%v",
nm.NodeKey.ShortString(), nm.MachineStatus)
login := nm.UserProfiles[nm.User].LoginName
if login == "" {
if nm.User.IsZero() {
login = "?"
} else {
login = fmt.Sprint(nm.User)
}
}
fmt.Fprintf(buf, " u=%s", login)
if nm.LocalPort != 0 {
fmt.Fprintf(buf, " port=%v", nm.LocalPort)
}
if nm.Debug != nil {
j, _ := json.Marshal(nm.Debug)
fmt.Fprintf(buf, " debug=%s", j)
}
fmt.Fprintf(buf, " %v", nm.Addresses)
buf.WriteByte('\n')
}
// equalConciseHeader reports whether a and b are equal for the fields
// used by printConciseHeader.
func (a *NetworkMap) equalConciseHeader(b *NetworkMap) bool {
if a.NodeKey != b.NodeKey ||
a.MachineStatus != b.MachineStatus ||
a.LocalPort != b.LocalPort ||
a.User != b.User ||
len(a.Addresses) != len(b.Addresses) {
return false
}
for i, a := range a.Addresses {
if b.Addresses[i] != a {
return false
}
}
return (a.Debug == nil && b.Debug == nil) || reflect.DeepEqual(a.Debug, b.Debug)
}
// printPeerConcise appends to buf a line repsenting the peer p.
//
// If this function is changed to access different fields of p, keep
// in nodeConciseEqual in sync.
func printPeerConcise(buf *strings.Builder, p *tailcfg.Node) {
aip := make([]string, len(p.AllowedIPs))
for i, a := range p.AllowedIPs {
s := strings.TrimSuffix(fmt.Sprint(a), "/32")
aip[i] = s
}
ep := make([]string, len(p.Endpoints))
for i, e := range p.Endpoints {
// Align vertically on the ':' between IP and port
colon := strings.IndexByte(e, ':')
spaces := 0
for colon > 0 && len(e)+spaces-colon < 6 {
spaces++
colon--
}
ep[i] = fmt.Sprintf("%21v", e+strings.Repeat(" ", spaces))
}
derp := p.DERP
const derpPrefix = "127.3.3.40:"
if strings.HasPrefix(derp, derpPrefix) {
derp = "D" + derp[len(derpPrefix):]
}
var discoShort string
if !p.DiscoKey.IsZero() {
discoShort = p.DiscoKey.ShortString() + " "
}
// Most of the time, aip is just one element, so format the
// table to look good in that case. This will also make multi-
// subnet nodes stand out visually.
fmt.Fprintf(buf, " %v %s%-2v %-15v : %v\n",
p.Key.ShortString(),
discoShort,
derp,
strings.Join(aip, " "),
strings.Join(ep, " "))
}
// nodeConciseEqual reports whether a and b are equal for the fields accessed by printPeerConcise.
func nodeConciseEqual(a, b *tailcfg.Node) bool {
return a.Key == b.Key &&
a.DERP == b.DERP &&
a.DiscoKey == b.DiscoKey &&
eqCIDRsIgnoreNil(a.AllowedIPs, b.AllowedIPs) &&
eqStringsIgnoreNil(a.Endpoints, b.Endpoints)
}
func (b *NetworkMap) ConciseDiffFrom(a *NetworkMap) string {
var diff strings.Builder
// See if header (non-peers, "bare") part of the network map changed.
// If so, print its diff lines first.
if !a.equalConciseHeader(b) {
diff.WriteByte('-')
a.printConciseHeader(&diff)
diff.WriteByte('+')
b.printConciseHeader(&diff)
}
aps, bps := a.Peers, b.Peers
for len(aps) > 0 && len(bps) > 0 {
pa, pb := aps[0], bps[0]
switch {
case pa.ID == pb.ID:
if !nodeConciseEqual(pa, pb) {
diff.WriteByte('-')
printPeerConcise(&diff, pa)
diff.WriteByte('+')
printPeerConcise(&diff, pb)
}
aps, bps = aps[1:], bps[1:]
case pa.ID > pb.ID:
// New peer in b.
diff.WriteByte('+')
printPeerConcise(&diff, pb)
bps = bps[1:]
case pb.ID > pa.ID:
// Deleted peer in b.
diff.WriteByte('-')
printPeerConcise(&diff, pa)
aps = aps[1:]
}
}
for _, pa := range aps {
diff.WriteByte('-')
printPeerConcise(&diff, pa)
}
for _, pb := range bps {
diff.WriteByte('+')
printPeerConcise(&diff, pb)
}
return diff.String()
}
func (nm *NetworkMap) JSON() string {
b, err := json.MarshalIndent(*nm, "", " ")
if err != nil {
return fmt.Sprintf("[json error: %v]", err)
}
return string(b)
}
// WGConfigFlags is a bitmask of flags to control the behavior of the
// wireguard configuration generation done by NetMap.WGCfg.
type WGConfigFlags int
const (
AllowSingleHosts WGConfigFlags = 1 << iota
AllowSubnetRoutes
)
// EndpointDiscoSuffix is appended to the hex representation of a peer's discovery key
// and is then the sole wireguard endpoint for peers with a non-zero discovery key.
// This form is then recognize by magicsock's CreateEndpoint.
const EndpointDiscoSuffix = ".disco.tailscale:12345"
// WGCfg returns the NetworkMaps's Wireguard configuration.
func (nm *NetworkMap) WGCfg(logf logger.Logf, flags WGConfigFlags) (*wgcfg.Config, error) {
cfg := &wgcfg.Config{
Name: "tailscale",
PrivateKey: wgcfg.PrivateKey(nm.PrivateKey),
Addresses: nm.Addresses,
ListenPort: nm.LocalPort,
Peers: make([]wgcfg.Peer, 0, len(nm.Peers)),
}
for _, peer := range nm.Peers {
if Debug.OnlyDisco && peer.DiscoKey.IsZero() {
continue
}
cfg.Peers = append(cfg.Peers, wgcfg.Peer{
PublicKey: wgcfg.Key(peer.Key),
})
cpeer := &cfg.Peers[len(cfg.Peers)-1]
if peer.KeepAlive {
cpeer.PersistentKeepalive = 25 // seconds
}
if !peer.DiscoKey.IsZero() {
if err := appendEndpoint(cpeer, fmt.Sprintf("%x%s", peer.DiscoKey[:], EndpointDiscoSuffix)); err != nil {
return nil, err
}
cpeer.Endpoints = fmt.Sprintf("%x.disco.tailscale:12345", peer.DiscoKey[:])
} else {
if err := appendEndpoint(cpeer, peer.DERP); err != nil {
return nil, err
}
for _, ep := range peer.Endpoints {
if err := appendEndpoint(cpeer, ep); err != nil {
return nil, err
}
}
}
for _, allowedIP := range peer.AllowedIPs {
if allowedIP.IsSingleIP() && tsaddr.IsTailscaleIP(allowedIP.IP) && (flags&AllowSingleHosts) == 0 {
logf("[v1] wgcfg: skipping node IP %v from %q (%v)",
allowedIP.IP, nodeDebugName(peer), peer.Key.ShortString())
continue
} else if cidrIsSubnet(peer, allowedIP) {
if (flags & AllowSubnetRoutes) == 0 {
logf("[v1] wgcfg: not accepting subnet route %v from %q (%v)",
allowedIP, nodeDebugName(peer), peer.Key.ShortString())
continue
}
}
cpeer.AllowedIPs = append(cpeer.AllowedIPs, allowedIP)
}
}
return cfg, nil
}
func nodeDebugName(n *tailcfg.Node) string {
name := n.Name
if name == "" {
name = n.Hostinfo.Hostname
}
if i := strings.Index(name, "."); i != -1 {
name = name[:i]
}
if name == "" && len(n.Addresses) != 0 {
return n.Addresses[0].String()
}
return name
}
// cidrIsSubnet reports whether cidr is a non-default-route subnet
// exported by node that is not one of its own self addresses.
func cidrIsSubnet(node *tailcfg.Node, cidr netaddr.IPPrefix) bool {
if cidr.Bits == 0 {
return false
}
if !cidr.IsSingleIP() {
return true
}
for _, selfCIDR := range node.Addresses {
if cidr == selfCIDR {
return false
}
}
return true
}
func appendEndpoint(peer *wgcfg.Peer, epStr string) error {
if epStr == "" {
return nil
}
_, port, err := net.SplitHostPort(epStr)
if err != nil {
return fmt.Errorf("malformed endpoint %q for peer %v", epStr, peer.PublicKey.ShortString())
}
_, err = strconv.ParseUint(port, 10, 16)
if err != nil {
return fmt.Errorf("invalid port in endpoint %q for peer %v", epStr, peer.PublicKey.ShortString())
}
if peer.Endpoints != "" {
peer.Endpoints += ","
}
peer.Endpoints += epStr
return nil
}
// eqStringsIgnoreNil reports whether a and b have the same length and
// contents, but ignore whether a or b are nil.
func eqStringsIgnoreNil(a, b []string) bool {
if len(a) != len(b) {
return false
}
for i, v := range a {
if v != b[i] {
return false
}
}
return true
}
// eqCIDRsIgnoreNil reports whether a and b have the same length and
// contents, but ignore whether a or b are nil.
func eqCIDRsIgnoreNil(a, b []netaddr.IPPrefix) bool {
if len(a) != len(b) {
return false
}
for i, v := range a {
if v != b[i] {
return false
}
}
return true
}