147 lines
4.8 KiB
Markdown
147 lines
4.8 KiB
Markdown
# Overview
|
|
There are quite a few ways of running Tailscale inside a Kubernetes Cluster, some of the common ones are covered in this doc.
|
|
## Instructions
|
|
### Setup
|
|
1. (Optional) Create the following secret which will automate login.<br>
|
|
You will need to get an [auth key](https://tailscale.com/kb/1085/auth-keys/) from [Tailscale Admin Console](https://login.tailscale.com/admin/authkeys).<br>
|
|
If you don't provide the key, you can still authenticate using the url in the logs.
|
|
|
|
```yaml
|
|
apiVersion: v1
|
|
kind: Secret
|
|
metadata:
|
|
name: tailscale-auth
|
|
stringData:
|
|
AUTH_KEY: tskey-...
|
|
```
|
|
|
|
1. Build and push the container
|
|
|
|
```bash
|
|
export IMAGE_TAG=tailscale-k8s:latest
|
|
make push
|
|
```
|
|
|
|
1. Tailscale (v1.16+) supports storing state inside a Kubernetes Secret.
|
|
|
|
Configure RBAC to allow the Tailscale pod to read/write the `tailscale` secret.
|
|
```bash
|
|
export SA_NAME=tailscale
|
|
export KUBE_SECRET=tailscale-auth
|
|
make rbac
|
|
```
|
|
|
|
### Sample Sidecar
|
|
Running as a sidecar allows you to directly expose a Kubernetes pod over Tailscale. This is particularly useful if you do not wish to expose a service on the public internet. This method allows bi-directional connectivty between the pod and other devices on the Tailnet. You can use [ACLs](https://tailscale.com/kb/1018/acls/) to control traffic flow.
|
|
|
|
1. Create and login to the sample nginx pod with a Tailscale sidecar
|
|
|
|
```bash
|
|
make sidecar
|
|
# If not using an auth key, authenticate by grabbing the Login URL here:
|
|
kubectl logs nginx ts-sidecar
|
|
```
|
|
|
|
1. Check if you can to connect to nginx over Tailscale:
|
|
|
|
```bash
|
|
curl http://nginx
|
|
```
|
|
Or, if you have [MagicDNS](https://tailscale.com/kb/1081/magicdns/) disabled:
|
|
```bash
|
|
curl "http://$(tailscale ip -4 nginx)"
|
|
```
|
|
|
|
#### Userspace Sidecar
|
|
You can also run the sidecar in userspace mode. The obvious benefit is reducing the amount of permissions Tailscale needs to run, the downside is that for outbound connectivity from the pod to the Tailnet you would need to use either the [SOCKS proxy](https://tailscale.com/kb/1112/userspace-networking) or HTTP proxy.
|
|
|
|
1. Create and login to the sample nginx pod with a Tailscale sidecar
|
|
|
|
```bash
|
|
make userspace-sidecar
|
|
# If not using an auth key, authenticate by grabbing the Login URL here:
|
|
kubectl logs nginx ts-sidecar
|
|
```
|
|
|
|
1. Check if you can to connect to nginx over Tailscale:
|
|
|
|
```bash
|
|
curl http://nginx
|
|
```
|
|
Or, if you have [MagicDNS](https://tailscale.com/kb/1081/magicdns/) disabled:
|
|
```bash
|
|
curl "http://$(tailscale ip -4 nginx)"
|
|
```
|
|
|
|
### Sample Proxy
|
|
Running a Tailscale proxy allows you to provide inbound connectivity to a Kubernetes Service.
|
|
|
|
1. Provide the `ClusterIP` of the service you want to reach by either:
|
|
|
|
**Creating a new deployment**
|
|
```bash
|
|
kubectl create deployment nginx --image nginx
|
|
kubectl expose deployment nginx --port 80
|
|
export DEST_IP="$(kubectl get svc nginx -o=jsonpath='{.spec.clusterIP}')"
|
|
```
|
|
**Using an existing service**
|
|
```bash
|
|
export DEST_IP="$(kubectl get svc <SVC_NAME> -o=jsonpath='{.spec.clusterIP}')"
|
|
```
|
|
|
|
1. Deploy the proxy pod
|
|
|
|
```bash
|
|
make proxy
|
|
# If not using an auth key, authenticate by grabbing the Login URL here:
|
|
kubectl logs proxy
|
|
```
|
|
|
|
1. Check if you can to connect to nginx over Tailscale:
|
|
|
|
```bash
|
|
curl http://proxy
|
|
```
|
|
|
|
Or, if you have [MagicDNS](https://tailscale.com/kb/1081/magicdns/) disabled:
|
|
|
|
```bash
|
|
curl "http://$(tailscale ip -4 proxy)"
|
|
```
|
|
|
|
### Subnet Router
|
|
|
|
Running a Tailscale [subnet router](https://tailscale.com/kb/1019/subnets/) allows you to access
|
|
the entire Kubernetes cluster network (assuming NetworkPolicies allow) over Tailscale.
|
|
|
|
1. Identify the Pod/Service CIDRs that cover your Kubernetes cluster. These will vary depending on [which CNI](https://kubernetes.io/docs/concepts/cluster-administration/networking/) you are using and on the Cloud Provider you are using. Add these to the `ROUTES` variable as comma-separated values.
|
|
|
|
```bash
|
|
SERVICE_CIDR=10.20.0.0/16
|
|
POD_CIDR=10.42.0.0/15
|
|
export ROUTES=$SERVICE_CIDR,$POD_CIDR
|
|
```
|
|
|
|
1. Deploy the subnet-router pod.
|
|
|
|
```bash
|
|
make subnet-router
|
|
# If not using an auth key, authenticate by grabbing the Login URL here:
|
|
kubectl logs subnet-router
|
|
```
|
|
|
|
1. In the [Tailscale admin console](https://login.tailscale.com/admin/machines), ensure that the
|
|
routes for the subnet-router are enabled.
|
|
|
|
1. Make sure that any client you want to connect from has `--accept-routes` enabled.
|
|
|
|
1. Check if you can connect to a `ClusterIP` or a `PodIP` over Tailscale:
|
|
|
|
```bash
|
|
# Get the Service IP
|
|
INTERNAL_IP="$(kubectl get svc <SVC_NAME> -o=jsonpath='{.spec.clusterIP}')"
|
|
# or, the Pod IP
|
|
# INTERNAL_IP="$(kubectl get po <POD_NAME> -o=jsonpath='{.status.podIP}')"
|
|
INTERNAL_PORT=8080
|
|
curl http://$INTERNAL_IP:$INTERNAL_PORT
|
|
``` |