2020-08-03 17:21:34 +01:00
/*
xsns_02_analog_esp32 . ino - ESP32 ADC support for Tasmota
Copyright ( C ) 2020 Theo Arends
This program is free software : you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
You should have received a copy of the GNU General Public License
along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
# ifdef ESP32
# ifdef USE_ADC
/*********************************************************************************************\
2020-08-04 15:33:05 +01:00
* ADC support for up to 8 channels on GPIO32 to GPIO39
2020-08-03 17:21:34 +01:00
\ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
# define XSNS_02 2
2020-08-04 15:33:05 +01:00
# define ANALOG_RESOLUTION 12 // 12 = 4095, 11 = 2047, 10 = 1023
2020-08-06 13:39:01 +01:00
# define ANALOG_RANGE 4095 // 4095 = 12, 2047 = 11, 1023 = 10
2020-08-04 15:33:05 +01:00
2020-08-03 17:21:34 +01:00
# define TO_CELSIUS(x) ((x) - 273.15)
# define TO_KELVIN(x) ((x) + 273.15)
// Parameters for equation
# define ANALOG_V33 3.3 // ESP8266 Analog voltage
# define ANALOG_T0 TO_KELVIN(25.0) // 25 degrees Celcius in Kelvin (= 298.15)
// Shelly 2.5 NTC Thermistor
// 3V3 --- ANALOG_NTC_BRIDGE_RESISTANCE ---v--- NTC --- Gnd
// |
// ADC0
# define ANALOG_NTC_BRIDGE_RESISTANCE 32000 // NTC Voltage bridge resistor
# define ANALOG_NTC_RESISTANCE 10000 // NTC Resistance
# define ANALOG_NTC_B_COEFFICIENT 3350 // NTC Beta Coefficient
// LDR parameters
// 3V3 --- LDR ---v--- ANALOG_LDR_BRIDGE_RESISTANCE --- Gnd
// |
// ADC0
# define ANALOG_LDR_BRIDGE_RESISTANCE 10000 // LDR Voltage bridge resistor
# define ANALOG_LDR_LUX_CALC_SCALAR 12518931 // Experimental
# define ANALOG_LDR_LUX_CALC_EXPONENT -1.4050 // Experimental
// CT Based Apparrent Power Measurement Parameters
// 3V3 --- R1 ----v--- R1 --- Gnd
// |
// CT+ CT-
// |
// ADC0
// Default settings for a 20A/1V Current Transformer.
// Analog peak to peak range is measured and converted to RMS current using ANALOG_CT_MULTIPLIER
# define ANALOG_CT_FLAGS 0 // (uint32_t) reserved for possible future use
2020-08-04 15:33:05 +01:00
# define ANALOG_CT_MULTIPLIER 2146 // (uint32_t) Multiplier*100000 to convert raw ADC peak to peak range 0..ANALOG_RANGE to RMS current in Amps. Value of 100000 corresponds to 1
2020-08-03 17:21:34 +01:00
# define ANALOG_CT_VOLTAGE 2300 // (int) Convert current in Amps to apparrent power in Watts using voltage in Volts*10. Value of 2200 corresponds to 220V
# define CT_FLAG_ENERGY_RESET (1 << 0) // Reset energy total
2020-08-06 13:39:01 +01:00
// Odroid joysticks
// ---- Up
// 3V3 ---| |------------
// |
// ---- Dn |--- R10k --- Gnd
// 3V3 ---| |--- R10k ---|
// |
// ADC
// Press "Up" will raise ADC to ANALOG_RANGE, Press "Dn" will raise ADC to ANALOG_RANGE/2
# define ANALOG_JOYSTICK (ANALOG_RANGE / 3) +100 // Add resistor tolerance
2020-08-04 15:33:05 +01:00
struct {
uint8_t present = 0 ;
uint8_t type = 0 ;
} Adcs ;
2020-08-03 17:21:34 +01:00
struct {
float temperature = 0 ;
float current = 0 ;
float energy = 0 ;
2020-08-04 15:33:05 +01:00
uint32_t param1 = 0 ;
uint32_t param2 = 0 ;
int param3 = 0 ;
int param4 = 0 ;
2020-08-03 17:21:34 +01:00
uint32_t previous_millis = 0 ;
uint16_t last_value = 0 ;
uint8_t type = 0 ;
uint8_t pin = 0 ;
} Adc [ MAX_ADCS ] ;
2020-08-04 15:33:05 +01:00
void AdcSaveSettings ( uint32_t idx ) {
char parameters [ 32 ] ;
snprintf_P ( parameters , sizeof ( parameters ) , PSTR ( " %d,%d,%d,%d,%d " ) ,
Adc [ idx ] . type , Adc [ idx ] . param1 , Adc [ idx ] . param2 , Adc [ idx ] . param3 , Adc [ idx ] . param4 ) ;
SettingsUpdateText ( SET_ADC_PARAM1 + idx , parameters ) ;
}
2020-08-03 17:21:34 +01:00
2020-08-04 15:33:05 +01:00
void AdcGetSettings ( uint32_t idx ) {
char parameters [ 32 ] ;
Adcs . type = 0 ;
Adc [ idx ] . param1 = 0 ;
Adc [ idx ] . param2 = 0 ;
Adc [ idx ] . param3 = 0 ;
Adc [ idx ] . param4 = 0 ;
if ( strstr ( SettingsText ( SET_ADC_PARAM1 + idx ) , " , " ) ! = nullptr ) {
Adcs . type = atoi ( subStr ( parameters , SettingsText ( SET_ADC_PARAM1 + idx ) , " , " , 1 ) ) ;
Adc [ idx ] . param1 = atoi ( subStr ( parameters , SettingsText ( SET_ADC_PARAM1 + idx ) , " , " , 2 ) ) ;
Adc [ idx ] . param2 = atoi ( subStr ( parameters , SettingsText ( SET_ADC_PARAM1 + idx ) , " , " , 3 ) ) ;
Adc [ idx ] . param3 = atoi ( subStr ( parameters , SettingsText ( SET_ADC_PARAM1 + idx ) , " , " , 4 ) ) ;
Adc [ idx ] . param4 = atoi ( subStr ( parameters , SettingsText ( SET_ADC_PARAM1 + idx ) , " , " , 5 ) ) ;
}
}
void AdcInitParams ( uint8_t idx ) {
if ( ( Adcs . type ! = Adc [ idx ] . type ) | | ( Adc [ idx ] . param1 > 1000000 ) ) {
if ( ADC_TEMP = = Adc [ idx ] . type ) {
2020-08-03 17:21:34 +01:00
// Default Shelly 2.5 and 1PM parameters
2020-08-04 15:33:05 +01:00
Adc [ idx ] . param1 = ANALOG_NTC_BRIDGE_RESISTANCE ;
Adc [ idx ] . param2 = ANALOG_NTC_RESISTANCE ;
Adc [ idx ] . param3 = ANALOG_NTC_B_COEFFICIENT * 10000 ;
2020-08-03 17:21:34 +01:00
}
2020-08-04 15:33:05 +01:00
else if ( ADC_LIGHT = = Adc [ idx ] . type ) {
Adc [ idx ] . param1 = ANALOG_LDR_BRIDGE_RESISTANCE ;
Adc [ idx ] . param2 = ANALOG_LDR_LUX_CALC_SCALAR ;
Adc [ idx ] . param3 = ANALOG_LDR_LUX_CALC_EXPONENT * 10000 ;
2020-08-03 17:21:34 +01:00
}
2020-08-04 15:33:05 +01:00
else if ( ADC_RANGE = = Adc [ idx ] . type ) {
Adc [ idx ] . param1 = 0 ;
Adc [ idx ] . param2 = ANALOG_RANGE ;
Adc [ idx ] . param3 = 0 ;
Adc [ idx ] . param4 = 100 ;
2020-08-03 17:21:34 +01:00
}
2020-08-04 15:33:05 +01:00
else if ( ADC_CT_POWER = = Adc [ idx ] . type ) {
2020-08-06 13:39:01 +01:00
Adc [ idx ] . param1 = ANALOG_CT_FLAGS ; // (uint32_t) 0
Adc [ idx ] . param2 = ANALOG_CT_MULTIPLIER ; // (uint32_t) 100000
Adc [ idx ] . param3 = ANALOG_CT_VOLTAGE ; // (int) 10
2020-08-03 17:21:34 +01:00
}
2020-08-04 15:33:05 +01:00
else if ( ADC_JOY = = Adc [ idx ] . type ) {
2020-08-06 13:39:01 +01:00
Adc [ idx ] . param1 = ANALOG_JOYSTICK ;
2020-08-04 15:33:05 +01:00
}
}
}
void AdcAttach ( uint8_t pin , uint8_t type ) {
Adc [ Adcs . present ] . pin = pin ;
if ( adcAttachPin ( Adc [ Adcs . present ] . pin ) ) {
Adc [ Adcs . present ] . type = type ;
// analogSetPinAttenuation(Adc[Adcs.present].pin, ADC_11db); // Default
Adcs . present + + ;
2020-08-03 17:21:34 +01:00
}
}
void AdcInit ( void ) {
2020-08-04 15:33:05 +01:00
Adcs . present = 0 ;
2020-08-03 17:21:34 +01:00
for ( uint32_t i = 0 ; i < MAX_ADCS ; i + + ) {
if ( PinUsed ( GPIO_ADC_INPUT , i ) ) {
2020-08-04 15:33:05 +01:00
AdcAttach ( Pin ( GPIO_ADC_INPUT , i ) , ADC_INPUT ) ;
2020-08-03 17:21:34 +01:00
}
if ( PinUsed ( GPIO_ADC_TEMP , i ) ) {
2020-08-04 15:33:05 +01:00
AdcAttach ( Pin ( GPIO_ADC_TEMP , i ) , ADC_TEMP ) ;
2020-08-03 17:21:34 +01:00
}
if ( PinUsed ( GPIO_ADC_LIGHT , i ) ) {
2020-08-04 15:33:05 +01:00
AdcAttach ( Pin ( GPIO_ADC_LIGHT , i ) , ADC_LIGHT ) ;
2020-08-03 17:21:34 +01:00
}
if ( PinUsed ( GPIO_ADC_BUTTON , i ) ) {
2020-08-04 15:33:05 +01:00
AdcAttach ( Pin ( GPIO_ADC_BUTTON , i ) , ADC_BUTTON ) ;
2020-08-03 17:21:34 +01:00
}
2020-08-04 15:33:05 +01:00
if ( PinUsed ( GPIO_ADC_BUTTON_INV , i ) ) {
AdcAttach ( Pin ( GPIO_ADC_BUTTON_INV , i ) , ADC_BUTTON_INV ) ;
2020-08-03 17:21:34 +01:00
}
if ( PinUsed ( GPIO_ADC_RANGE , i ) ) {
2020-08-04 15:33:05 +01:00
AdcAttach ( Pin ( GPIO_ADC_RANGE , i ) , ADC_RANGE ) ;
2020-08-03 17:21:34 +01:00
}
if ( PinUsed ( GPIO_ADC_CT_POWER , i ) ) {
2020-08-04 15:33:05 +01:00
AdcAttach ( Pin ( GPIO_ADC_CT_POWER , i ) , ADC_CT_POWER ) ;
}
if ( PinUsed ( GPIO_ADC_JOY , i ) ) {
AdcAttach ( Pin ( GPIO_ADC_JOY , i ) , ADC_JOY ) ;
2020-08-03 17:21:34 +01:00
}
}
2020-08-04 15:33:05 +01:00
if ( Adcs . present ) {
analogSetClockDiv ( 1 ) ; // Default 1
analogSetWidth ( ANALOG_RESOLUTION ) ; // Default 12 bits (0 - 4095)
analogSetAttenuation ( ADC_11db ) ; // Default 11db
for ( uint32_t idx = 0 ; idx < Adcs . present ; idx + + ) {
AdcGetSettings ( idx ) ;
AdcInitParams ( idx ) ;
AdcSaveSettings ( idx ) ;
}
2020-08-03 17:21:34 +01:00
}
}
2020-08-04 15:33:05 +01:00
uint16_t AdcRead ( uint32_t pin , uint32_t factor ) {
2020-08-03 17:21:34 +01:00
// factor 1 = 2 samples
// factor 2 = 4 samples
// factor 3 = 8 samples
// factor 4 = 16 samples
// factor 5 = 32 samples
2020-08-04 15:33:05 +01:00
uint32_t samples = 1 < < factor ;
uint32_t analog = 0 ;
2020-08-03 17:21:34 +01:00
for ( uint32_t i = 0 ; i < samples ; i + + ) {
analog + = analogRead ( pin ) ;
delay ( 1 ) ;
}
analog > > = factor ;
return analog ;
}
# ifdef USE_RULES
void AdcEvery250ms ( void ) {
2020-08-04 15:33:05 +01:00
for ( uint32_t idx = 0 ; idx < Adcs . present ; idx + + ) {
2020-08-03 17:21:34 +01:00
if ( ADC_INPUT = = Adc [ idx ] . type ) {
uint16_t new_value = AdcRead ( Adc [ idx ] . pin , 5 ) ;
if ( ( new_value < Adc [ idx ] . last_value - 10 ) | | ( new_value > Adc [ idx ] . last_value + 10 ) ) {
Adc [ idx ] . last_value = new_value ;
uint16_t value = Adc [ idx ] . last_value / 10 ;
2020-08-04 17:01:51 +01:00
Response_P ( PSTR ( " { \" ANALOG \" :{ \" A%ddiv10 \" :%d}} " ) , idx + 1 , ( value > 99 ) ? 100 : value ) ;
2020-08-03 17:21:34 +01:00
XdrvRulesProcess ( ) ;
}
}
2020-08-04 15:33:05 +01:00
else if ( ADC_JOY = = Adc [ idx ] . type ) {
uint16_t new_value = AdcRead ( Adc [ idx ] . pin , 1 ) ;
if ( new_value & & ( new_value ! = Adc [ idx ] . last_value ) ) {
Adc [ idx ] . last_value = new_value ;
uint16_t value = new_value / Adc [ idx ] . param1 ;
2020-08-04 17:01:51 +01:00
Response_P ( PSTR ( " { \" ANALOG \" :{ \" Joy%d \" :%d}} " ) , idx + 1 , value ) ;
2020-08-04 15:33:05 +01:00
XdrvRulesProcess ( ) ;
} else {
Adc [ idx ] . last_value = 0 ;
}
}
2020-08-03 17:21:34 +01:00
}
}
# endif // USE_RULES
2020-08-04 15:33:05 +01:00
uint16_t AdcGetLux ( uint32_t idx ) {
int adc = AdcRead ( Adc [ idx ] . pin , 2 ) ;
2020-08-03 17:21:34 +01:00
// Source: https://www.allaboutcircuits.com/projects/design-a-luxmeter-using-a-light-dependent-resistor/
2020-08-04 15:33:05 +01:00
double resistorVoltage = ( ( double ) adc / ANALOG_RANGE ) * ANALOG_V33 ;
2020-08-03 17:21:34 +01:00
double ldrVoltage = ANALOG_V33 - resistorVoltage ;
2020-08-04 15:33:05 +01:00
double ldrResistance = ldrVoltage / resistorVoltage * ( double ) Adc [ idx ] . param1 ;
double ldrLux = ( double ) Adc [ idx ] . param2 * FastPrecisePow ( ldrResistance , ( double ) Adc [ idx ] . param3 / 10000 ) ;
2020-08-03 17:21:34 +01:00
return ( uint16_t ) ldrLux ;
}
2020-08-04 15:33:05 +01:00
uint16_t AdcGetRange ( uint32_t idx ) {
2020-08-03 17:21:34 +01:00
// formula for calibration: value, fromLow, fromHigh, toLow, toHigh
// Example: 514, 632, 236, 0, 100
// int( ((<param2> - <analog-value>) / (<param2> - <param1>) ) * (<param3> - <param4>) ) + <param4> )
2020-08-04 15:33:05 +01:00
int adc = AdcRead ( Adc [ idx ] . pin , 2 ) ;
double adcrange = ( ( ( double ) Adc [ idx ] . param2 - ( double ) adc ) / ( ( ( double ) Adc [ idx ] . param2 - ( double ) Adc [ idx ] . param1 ) ) * ( ( double ) Adc [ idx ] . param3 - ( double ) Adc [ idx ] . param4 ) + ( double ) Adc [ idx ] . param4 ) ;
2020-08-03 17:21:34 +01:00
return ( uint16_t ) adcrange ;
}
void AdcGetCurrentPower ( uint8_t idx , uint8_t factor ) {
// factor 1 = 2 samples
// factor 2 = 4 samples
// factor 3 = 8 samples
// factor 4 = 16 samples
// factor 5 = 32 samples
uint8_t samples = 1 < < factor ;
uint16_t analog = 0 ;
2020-08-04 15:33:05 +01:00
uint16_t analog_min = ANALOG_RANGE ;
2020-08-03 17:21:34 +01:00
uint16_t analog_max = 0 ;
2020-08-04 15:33:05 +01:00
if ( 0 = = Adc [ idx ] . param1 ) {
2020-08-03 17:21:34 +01:00
for ( uint32_t i = 0 ; i < samples ; i + + ) {
analog = analogRead ( Adc [ idx ] . pin ) ;
if ( analog < analog_min ) {
analog_min = analog ;
}
if ( analog > analog_max ) {
analog_max = analog ;
}
delay ( 1 ) ;
}
2020-08-04 15:33:05 +01:00
Adc [ idx ] . current = ( float ) ( analog_max - analog_min ) * ( ( float ) ( Adc [ idx ] . param2 ) / 100000 ) ;
2020-08-03 17:21:34 +01:00
}
else {
analog = AdcRead ( Adc [ idx ] . pin , 5 ) ;
2020-08-04 15:33:05 +01:00
if ( analog > Adc [ idx ] . param1 ) {
Adc [ idx ] . current = ( ( float ) ( analog ) - ( float ) Adc [ idx ] . param1 ) * ( ( float ) ( Adc [ idx ] . param2 ) / 100000 ) ;
2020-08-03 17:21:34 +01:00
}
else {
Adc [ idx ] . current = 0 ;
}
}
2020-08-04 15:33:05 +01:00
float power = Adc [ idx ] . current * ( float ) ( Adc [ idx ] . param3 ) / 10 ;
2020-08-03 17:21:34 +01:00
uint32_t current_millis = millis ( ) ;
Adc [ idx ] . energy = Adc [ idx ] . energy + ( ( power * ( current_millis - Adc [ idx ] . previous_millis ) ) / 3600000000 ) ;
Adc [ idx ] . previous_millis = current_millis ;
}
void AdcEverySecond ( void ) {
2020-08-04 15:33:05 +01:00
for ( uint32_t idx = 0 ; idx < Adcs . present ; idx + + ) {
2020-08-03 17:21:34 +01:00
if ( ADC_TEMP = = Adc [ idx ] . type ) {
int adc = AdcRead ( Adc [ idx ] . pin , 2 ) ;
// Steinhart-Hart equation for thermistor as temperature sensor
2020-08-04 15:33:05 +01:00
double Rt = ( adc * Adc [ idx ] . param1 ) / ( 1024.0 * ANALOG_V33 - ( double ) adc ) ;
double BC = ( double ) Adc [ idx ] . param3 / 10000 ;
double T = BC / ( BC / ANALOG_T0 + TaylorLog ( Rt / ( double ) Adc [ idx ] . param2 ) ) ;
2020-08-03 17:21:34 +01:00
Adc [ idx ] . temperature = ConvertTemp ( TO_CELSIUS ( T ) ) ;
}
else if ( ADC_CT_POWER = = Adc [ idx ] . type ) {
AdcGetCurrentPower ( idx , 5 ) ;
}
}
}
2020-08-04 17:01:51 +01:00
void AdcShowContinuation ( bool * jsonflg ) {
if ( * jsonflg ) {
ResponseAppend_P ( PSTR ( " , " ) ) ;
} else {
ResponseAppend_P ( PSTR ( " , \" ANALOG \" :{ " ) ) ;
* jsonflg = true ;
}
}
2020-08-03 17:21:34 +01:00
void AdcShow ( bool json ) {
bool domo_flag [ ADC_END ] = { false } ;
2020-08-04 17:01:51 +01:00
char adc_name [ 10 ] ; // ANALOG8
bool jsonflg = false ;
2020-08-04 15:33:05 +01:00
for ( uint32_t idx = 0 ; idx < Adcs . present ; idx + + ) {
2020-08-04 17:01:51 +01:00
snprintf_P ( adc_name , sizeof ( adc_name ) , PSTR ( " Analog%d " ) , idx + 1 ) ;
2020-08-03 17:21:34 +01:00
switch ( Adc [ idx ] . type ) {
case ADC_INPUT : {
uint16_t analog = AdcRead ( Adc [ idx ] . pin , 5 ) ;
if ( json ) {
2020-08-04 17:01:51 +01:00
AdcShowContinuation ( & jsonflg ) ;
ResponseAppend_P ( PSTR ( " \" A%d \" :%d " ) , idx + 1 , analog ) ;
2020-08-03 17:21:34 +01:00
# ifdef USE_WEBSERVER
} else {
2020-08-04 17:01:51 +01:00
WSContentSend_PD ( HTTP_SNS_ANALOG , " " , idx + 1 , analog ) ;
2020-08-03 17:21:34 +01:00
# endif // USE_WEBSERVER
}
break ;
}
case ADC_TEMP : {
char temperature [ 33 ] ;
dtostrfd ( Adc [ idx ] . temperature , Settings . flag2 . temperature_resolution , temperature ) ;
if ( json ) {
2020-08-04 17:01:51 +01:00
AdcShowContinuation ( & jsonflg ) ;
ResponseAppend_P ( PSTR ( " \" " D_JSON_TEMPERATURE " %d \" :%s " ) , idx + 1 , temperature ) ;
2020-08-03 17:21:34 +01:00
if ( ( 0 = = tele_period ) & & ( ! domo_flag [ ADC_TEMP ] ) ) {
# ifdef USE_DOMOTICZ
DomoticzSensor ( DZ_TEMP , temperature ) ;
domo_flag [ ADC_TEMP ] = true ;
# endif // USE_DOMOTICZ
# ifdef USE_KNX
KnxSensor ( KNX_TEMPERATURE , Adc [ idx ] . temperature ) ;
# endif // USE_KNX
}
# ifdef USE_WEBSERVER
} else {
WSContentSend_PD ( HTTP_SNS_TEMP , adc_name , temperature , TempUnit ( ) ) ;
# endif // USE_WEBSERVER
}
break ;
}
case ADC_LIGHT : {
2020-08-04 15:33:05 +01:00
uint16_t adc_light = AdcGetLux ( idx ) ;
2020-08-03 17:21:34 +01:00
if ( json ) {
2020-08-04 17:01:51 +01:00
AdcShowContinuation ( & jsonflg ) ;
ResponseAppend_P ( PSTR ( " \" " D_JSON_ILLUMINANCE " %d \" :%d " ) , idx + 1 , adc_light ) ;
2020-08-03 17:21:34 +01:00
# ifdef USE_DOMOTICZ
if ( ( 0 = = tele_period ) & & ( ! domo_flag [ ADC_LIGHT ] ) ) {
DomoticzSensor ( DZ_ILLUMINANCE , adc_light ) ;
domo_flag [ ADC_LIGHT ] = true ;
}
# endif // USE_DOMOTICZ
# ifdef USE_WEBSERVER
} else {
WSContentSend_PD ( HTTP_SNS_ILLUMINANCE , adc_name , adc_light ) ;
# endif // USE_WEBSERVER
}
break ;
}
case ADC_RANGE : {
2020-08-04 15:33:05 +01:00
uint16_t adc_range = AdcGetRange ( idx ) ;
2020-08-03 17:21:34 +01:00
if ( json ) {
2020-08-04 17:01:51 +01:00
AdcShowContinuation ( & jsonflg ) ;
ResponseAppend_P ( PSTR ( " \" " D_JSON_RANGE " %d \" :%d " ) , idx + 1 , adc_range ) ;
2020-08-03 17:21:34 +01:00
# ifdef USE_WEBSERVER
} else {
WSContentSend_PD ( HTTP_SNS_RANGE , adc_name , adc_range ) ;
# endif // USE_WEBSERVER
}
break ;
}
case ADC_CT_POWER : {
AdcGetCurrentPower ( idx , 5 ) ;
2020-08-04 15:33:05 +01:00
float voltage = ( float ) ( Adc [ idx ] . param3 ) / 10 ;
2020-08-03 17:21:34 +01:00
char voltage_chr [ FLOATSZ ] ;
dtostrfd ( voltage , Settings . flag2 . voltage_resolution , voltage_chr ) ;
char current_chr [ FLOATSZ ] ;
dtostrfd ( Adc [ idx ] . current , Settings . flag2 . current_resolution , current_chr ) ;
char power_chr [ FLOATSZ ] ;
dtostrfd ( voltage * Adc [ idx ] . current , Settings . flag2 . wattage_resolution , power_chr ) ;
char energy_chr [ FLOATSZ ] ;
dtostrfd ( Adc [ idx ] . energy , Settings . flag2 . energy_resolution , energy_chr ) ;
if ( json ) {
2020-08-04 17:01:51 +01:00
AdcShowContinuation ( & jsonflg ) ;
ResponseAppend_P ( PSTR ( " \" CTEnergy%d \" :{ \" " D_JSON_ENERGY " \" :%s, \" " D_JSON_POWERUSAGE " \" :%s, \" " D_JSON_VOLTAGE " \" :%s, \" " D_JSON_CURRENT " \" :%s} " ) ,
idx + 1 , energy_chr , power_chr , voltage_chr , current_chr ) ;
2020-08-03 17:21:34 +01:00
# ifdef USE_DOMOTICZ
if ( ( 0 = = tele_period ) & & ( ! domo_flag [ ADC_CT_POWER ] ) ) {
DomoticzSensor ( DZ_POWER_ENERGY , power_chr ) ;
DomoticzSensor ( DZ_VOLTAGE , voltage_chr ) ;
DomoticzSensor ( DZ_CURRENT , current_chr ) ;
domo_flag [ ADC_CT_POWER ] = true ;
}
# endif // USE_DOMOTICZ
# ifdef USE_WEBSERVER
} else {
WSContentSend_PD ( HTTP_SNS_VOLTAGE , voltage_chr ) ;
WSContentSend_PD ( HTTP_SNS_CURRENT , current_chr ) ;
WSContentSend_PD ( HTTP_SNS_POWER , power_chr ) ;
WSContentSend_PD ( HTTP_SNS_ENERGY_TOTAL , energy_chr ) ;
# endif // USE_WEBSERVER
}
break ;
}
2020-08-04 17:01:51 +01:00
case ADC_JOY : {
uint16_t new_value = AdcRead ( Adc [ idx ] . pin , 1 ) ;
uint16_t value = new_value / Adc [ idx ] . param1 ;
if ( json ) {
AdcShowContinuation ( & jsonflg ) ;
ResponseAppend_P ( PSTR ( " \" Joy%d \" :%d " ) , idx + 1 , value ) ;
}
break ;
}
2020-08-03 17:21:34 +01:00
}
}
2020-08-04 17:01:51 +01:00
if ( jsonflg ) {
ResponseJsonEnd ( ) ;
}
2020-08-03 17:21:34 +01:00
}
/*********************************************************************************************\
* Commands
\ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
const char kAdcCommands [ ] PROGMEM = " | " // No prefix
D_CMND_ADCPARAM ;
void ( * const AdcCommand [ ] ) ( void ) PROGMEM = {
& CmndAdcParam } ;
void CmndAdcParam ( void ) {
2020-08-04 15:33:05 +01:00
if ( ( XdrvMailbox . index > 0 ) & & ( XdrvMailbox . index < = MAX_ADCS ) ) {
uint8_t idx = XdrvMailbox . index - 1 ;
if ( XdrvMailbox . data_len ) {
if ( ( ADC_TEMP = = XdrvMailbox . payload ) | |
( ADC_LIGHT = = XdrvMailbox . payload ) | |
( ADC_RANGE = = XdrvMailbox . payload ) | |
( ADC_CT_POWER = = XdrvMailbox . payload ) | |
( ADC_JOY = = XdrvMailbox . payload ) ) {
AdcGetSettings ( idx ) ;
if ( ChrCount ( XdrvMailbox . data , " , " ) > 2 ) { // Process parameter entry
char sub_string [ XdrvMailbox . data_len + 1 ] ;
// AdcParam 2, 32000, 10000, 3350
// AdcParam 3, 10000, 12518931, -1.405
// AdcParam 6, 0, ANALOG_RANGE, 0, 100
// AdcParam 7, 0, 2146, 0.23
// AdcParam 8, 1000, 0, 0
Adc [ idx ] . type = XdrvMailbox . payload ;
Adc [ idx ] . param1 = strtol ( subStr ( sub_string , XdrvMailbox . data , " , " , 2 ) , nullptr , 10 ) ;
Adc [ idx ] . param2 = strtol ( subStr ( sub_string , XdrvMailbox . data , " , " , 3 ) , nullptr , 10 ) ;
if ( ADC_RANGE = = XdrvMailbox . payload ) {
Adc [ idx ] . param3 = abs ( strtol ( subStr ( sub_string , XdrvMailbox . data , " , " , 4 ) , nullptr , 10 ) ) ;
Adc [ idx ] . param4 = abs ( strtol ( subStr ( sub_string , XdrvMailbox . data , " , " , 5 ) , nullptr , 10 ) ) ;
} else {
Adc [ idx ] . param3 = ( int ) ( CharToFloat ( subStr ( sub_string , XdrvMailbox . data , " , " , 4 ) ) * 10000 ) ;
}
if ( ADC_CT_POWER = = XdrvMailbox . payload ) {
if ( ( ( 1 = = Adc [ idx ] . param1 ) & CT_FLAG_ENERGY_RESET ) > 0 ) {
for ( uint32_t idx = 0 ; idx < MAX_ADCS ; idx + + ) {
Adc [ idx ] . energy = 0 ;
}
Adc [ idx ] . param1 ^ = CT_FLAG_ENERGY_RESET ; // Cancel energy reset flag
2020-08-03 17:21:34 +01:00
}
}
2020-08-04 15:33:05 +01:00
} else { // Set default values based on current adc type
// AdcParam 2
// AdcParam 3
// AdcParam 6
// AdcParam 7
// AdcParam 8
Adcs . type = 0 ;
AdcInitParams ( idx ) ;
2020-08-03 17:21:34 +01:00
}
2020-08-04 15:33:05 +01:00
AdcSaveSettings ( idx ) ;
2020-08-03 17:21:34 +01:00
}
}
2020-08-04 15:33:05 +01:00
// AdcParam
AdcGetSettings ( idx ) ;
Response_P ( PSTR ( " { \" " D_CMND_ADCPARAM " %d \" :[%d,%d,%d " ) , idx + 1 , Adcs . type , Adc [ idx ] . param1 , Adc [ idx ] . param2 ) ;
2020-08-04 17:01:51 +01:00
if ( ADC_RANGE = = Adc [ idx ] . type ) {
2020-08-04 15:33:05 +01:00
ResponseAppend_P ( PSTR ( " ,%d,%d " ) , Adc [ idx ] . param3 , Adc [ idx ] . param4 ) ;
} else {
int value = Adc [ idx ] . param3 ;
uint8_t precision ;
for ( precision = 4 ; precision > 0 ; precision - - ) {
if ( value % 10 ) { break ; }
value / = 10 ;
}
char param3 [ 33 ] ;
dtostrfd ( ( ( double ) Adc [ idx ] . param3 ) / 10000 , precision , param3 ) ;
ResponseAppend_P ( PSTR ( " ,%s " ) , param3 ) ;
2020-08-03 17:21:34 +01:00
}
2020-08-04 15:33:05 +01:00
ResponseAppend_P ( PSTR ( " ]} " ) ) ;
2020-08-03 17:21:34 +01:00
}
}
/*********************************************************************************************\
* Interface
\ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
bool Xsns02 ( uint8_t function ) {
bool result = false ;
switch ( function ) {
case FUNC_COMMAND :
result = DecodeCommand ( kAdcCommands , AdcCommand ) ;
break ;
case FUNC_INIT :
AdcInit ( ) ;
break ;
default :
2020-08-04 15:33:05 +01:00
if ( Adcs . present ) {
2020-08-03 17:21:34 +01:00
switch ( function ) {
# ifdef USE_RULES
case FUNC_EVERY_250_MSECOND :
AdcEvery250ms ( ) ;
break ;
# endif // USE_RULES
case FUNC_EVERY_SECOND :
AdcEverySecond ( ) ;
break ;
case FUNC_JSON_APPEND :
AdcShow ( 1 ) ;
break ;
# ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR :
AdcShow ( 0 ) ;
break ;
# endif // USE_WEBSERVER
}
}
}
return result ;
}
# endif // USE_ADC
# endif // ESP32