2020-08-03 17:21:34 +01:00
/*
2020-09-29 13:08:48 +01:00
xsns_02_analog . ino - ADC support for Tasmota
2020-08-03 17:21:34 +01:00
2021-01-01 12:44:04 +00:00
Copyright ( C ) 2021 Theo Arends
2020-08-03 17:21:34 +01:00
This program is free software : you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
You should have received a copy of the GNU General Public License
along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
# ifdef USE_ADC
/*********************************************************************************************\
2020-10-02 13:24:23 +01:00
* ADC support for ESP8266 GPIO17 ( = PIN_A0 ) and ESP32 up to 8 channels on GPIO32 to GPIO39
2020-08-03 17:21:34 +01:00
\ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
# define XSNS_02 2
2023-08-05 19:34:24 +01:00
# ifdef ESP32
# if ESP_IDF_VERSION_MAJOR >= 5
# include "esp32-hal-adc.h"
# endif
# endif
2020-10-08 17:27:12 +01:00
# ifdef ESP8266
# define ANALOG_RESOLUTION 10 // 12 = 4095, 11 = 2047, 10 = 1023
# define ANALOG_RANGE 1023 // 4095 = 12, 2047 = 11, 1023 = 10
2020-12-15 23:56:08 +00:00
# define ANALOG_PERCENT 10 // backward compatible div10 range
2020-11-28 16:00:15 +00:00
# endif // ESP8266
# ifdef ESP32
2020-10-08 17:27:12 +01:00
# undef ANALOG_RESOLUTION
2020-08-04 15:33:05 +01:00
# define ANALOG_RESOLUTION 12 // 12 = 4095, 11 = 2047, 10 = 1023
2020-10-08 17:27:12 +01:00
# undef ANALOG_RANGE
2020-08-06 13:39:01 +01:00
# define ANALOG_RANGE 4095 // 4095 = 12, 2047 = 11, 1023 = 10
2020-12-15 23:56:08 +00:00
# undef ANALOG_PERCENT
# define ANALOG_PERCENT ((ANALOG_RANGE + 50) / 100) // approximation to 1% ADC range
2020-11-28 16:00:15 +00:00
# endif // ESP32
2020-08-04 15:33:05 +01:00
2020-08-03 17:21:34 +01:00
# define TO_CELSIUS(x) ((x) - 273.15)
# define TO_KELVIN(x) ((x) + 273.15)
// Parameters for equation
2021-02-10 14:56:06 +00:00
# define ANALOG_V33 3.3 // ESP8266 / ESP32 Analog voltage
2021-11-16 22:10:25 +00:00
# define ANALOG_T0 TO_KELVIN(25.0) // 25 degrees Celsius in Kelvin (= 298.15)
2020-08-03 17:21:34 +01:00
2022-09-25 21:40:29 +01:00
// Mode 0 : Shelly 2.5 NTC Thermistor
2020-08-03 17:21:34 +01:00
// 3V3 --- ANALOG_NTC_BRIDGE_RESISTANCE ---v--- NTC --- Gnd
// |
// ADC0
2022-09-25 21:40:29 +01:00
// Mode 1 : NTC towards 3V3 (Sinilink Thermostat Relay Board (XY-WFT1)
// 3V3 --- NTC ---v--- ANALOG_NTC_BRIDGE_RESISTANCE --- Gnd
2022-09-30 22:53:58 +01:00
// |
// ADC0
2020-08-03 17:21:34 +01:00
# define ANALOG_NTC_BRIDGE_RESISTANCE 32000 // NTC Voltage bridge resistor
# define ANALOG_NTC_RESISTANCE 10000 // NTC Resistance
# define ANALOG_NTC_B_COEFFICIENT 3350 // NTC Beta Coefficient
// LDR parameters
// 3V3 --- LDR ---v--- ANALOG_LDR_BRIDGE_RESISTANCE --- Gnd
// |
// ADC0
# define ANALOG_LDR_BRIDGE_RESISTANCE 10000 // LDR Voltage bridge resistor
# define ANALOG_LDR_LUX_CALC_SCALAR 12518931 // Experimental
# define ANALOG_LDR_LUX_CALC_EXPONENT -1.4050 // Experimental
// CT Based Apparrent Power Measurement Parameters
// 3V3 --- R1 ----v--- R1 --- Gnd
// |
// CT+ CT-
// |
// ADC0
// Default settings for a 20A/1V Current Transformer.
// Analog peak to peak range is measured and converted to RMS current using ANALOG_CT_MULTIPLIER
# define ANALOG_CT_FLAGS 0 // (uint32_t) reserved for possible future use
2020-08-04 15:33:05 +01:00
# define ANALOG_CT_MULTIPLIER 2146 // (uint32_t) Multiplier*100000 to convert raw ADC peak to peak range 0..ANALOG_RANGE to RMS current in Amps. Value of 100000 corresponds to 1
2020-08-03 17:21:34 +01:00
# define ANALOG_CT_VOLTAGE 2300 // (int) Convert current in Amps to apparrent power in Watts using voltage in Volts*10. Value of 2200 corresponds to 220V
# define CT_FLAG_ENERGY_RESET (1 << 0) // Reset energy total
2020-10-08 17:27:12 +01:00
// Buttons
// ---- Inverted
// 3V3 ---| |----|
// |
// 3V3 --- R1 ----|--- R1 --- Gnd
// |
// |---| |--- Gnd
// | ----
// ADC
# define ANALOG_BUTTON 128 // Add resistor tolerance
2020-08-06 13:39:01 +01:00
// Odroid joysticks
// ---- Up
// 3V3 ---| |------------
// |
// ---- Dn |--- R10k --- Gnd
// 3V3 ---| |--- R10k ---|
// |
// ADC
// Press "Up" will raise ADC to ANALOG_RANGE, Press "Dn" will raise ADC to ANALOG_RANGE/2
# define ANALOG_JOYSTICK (ANALOG_RANGE / 3) +100 // Add resistor tolerance
2021-01-05 13:31:13 +00:00
// pH scale minimum and maximum values
# define ANALOG_PH_MAX 14.0
# define ANALOG_PH_MIN 0.0
// Default values for calibration solution with lower PH
2021-01-05 15:25:56 +00:00
# define ANALOG_PH_CALSOLUTION_LOW_PH 4.0
# define ANALOG_PH_CALSOLUTION_LOW_ANALOG_VALUE 282
2021-01-05 13:31:13 +00:00
// Default values for calibration solution with higher PH
2021-01-23 16:10:06 +00:00
# define ANALOG_PH_CALSOLUTION_HIGH_PH 9.18
2021-01-05 15:25:56 +00:00
# define ANALOG_PH_CALSOLUTION_HIGH_ANALOG_VALUE 435
2021-01-05 13:31:13 +00:00
2021-01-23 16:10:06 +00:00
// Multiplier used to store pH with 2 decimal places in a non decimal datatype
2021-01-05 15:25:56 +00:00
# define ANALOG_PH_DECIMAL_MULTIPLIER 100.0
2021-01-05 13:31:13 +00:00
2022-01-24 10:21:01 +00:00
// MQ-X sensor (MQ-02, MQ-03, MQ-04, MQ-05, MQ-06, MQ-07, MQ-08, MQ-09, MQ-131, MQ-135)
2022-08-22 13:32:08 +01:00
//
2022-01-24 10:21:01 +00:00
// A0 -------------------
// |
// GND ----------- |
// | |
// VCC --- | |
// | | |
// 3V3 GND ADC <- (A0 for nodemcu, wemos; GPIO34,35,36,39 and other analog IN/OUT pin for esp32)
2022-01-23 16:10:35 +00:00
//means mq type (ex for mq-02 use 2, mq-131 use 131)
2022-08-22 13:32:08 +01:00
# define ANALOG_MQ_TYPE 2
2022-01-23 16:10:35 +00:00
//exponential regression a params
# define ANALOG_MQ_A 574.25
//exponential regression b params
# define ANALOG_MQ_B -2.222
/*
Exponential regression :
Gas | a | b
LPG | 44771 | - 3.245
CH4 | 2 * 10 ^ 31 | 19.01
CO | 521853 | - 3.821
Alcohol | 0.3934 | - 1.504
Benzene | 4.8387 | - 2.68
2022-08-22 13:32:08 +01:00
Hexane | 7585.3 | - 2.849
2022-01-23 16:10:35 +00:00
NOx | - 462.43 | - 2.204
CL2 | 47.209 | - 1.186
O3 | 23.943 | - 1.11
*/
//ratio for alarm, NOT USED yet (RS / R0 = 15 ppm)
2022-08-22 13:32:08 +01:00
# define ANALOG_MQ_RatioMQCleanAir 15.0
2022-01-23 16:10:35 +00:00
// Multiplier used to store pH with 2 decimal places in a non decimal datatype
# define ANALOG_MQ_DECIMAL_MULTIPLIER 100.0
2022-01-23 22:54:29 +00:00
// lenght of filter
# define ANALOG_MQ_SAMPLES 60
2022-01-23 16:10:35 +00:00
2020-08-04 15:33:05 +01:00
struct {
uint8_t present = 0 ;
uint8_t type = 0 ;
} Adcs ;
2020-08-03 17:21:34 +01:00
struct {
float temperature = 0 ;
float current = 0 ;
float energy = 0 ;
2020-08-04 15:33:05 +01:00
uint32_t param1 = 0 ;
uint32_t param2 = 0 ;
int param3 = 0 ;
int param4 = 0 ;
2020-08-03 17:21:34 +01:00
uint32_t previous_millis = 0 ;
uint16_t last_value = 0 ;
uint8_t type = 0 ;
uint8_t pin = 0 ;
2022-01-23 22:54:29 +00:00
float mq_samples [ ANALOG_MQ_SAMPLES ] ;
int indexOfPointer = - 1 ;
2020-08-03 17:21:34 +01:00
} Adc [ MAX_ADCS ] ;
2020-09-25 17:15:31 +01:00
# ifdef ESP8266
bool adcAttachPin ( uint8_t pin ) {
2020-09-29 13:41:45 +01:00
return ( ADC0_PIN = = pin ) ;
2020-09-25 17:15:31 +01:00
}
# endif
2023-08-05 19:34:24 +01:00
# if defined(ESP32) && (ESP_IDF_VERSION_MAJOR >= 5)
bool adcAttachPin ( uint8_t pin ) {
return true ; // TODO - no more needed?
}
# endif
2020-09-25 17:15:31 +01:00
2020-08-04 15:33:05 +01:00
void AdcSaveSettings ( uint32_t idx ) {
char parameters [ 32 ] ;
snprintf_P ( parameters , sizeof ( parameters ) , PSTR ( " %d,%d,%d,%d,%d " ) ,
Adc [ idx ] . type , Adc [ idx ] . param1 , Adc [ idx ] . param2 , Adc [ idx ] . param3 , Adc [ idx ] . param4 ) ;
SettingsUpdateText ( SET_ADC_PARAM1 + idx , parameters ) ;
}
2020-08-03 17:21:34 +01:00
2020-08-04 15:33:05 +01:00
void AdcGetSettings ( uint32_t idx ) {
char parameters [ 32 ] ;
Adcs . type = 0 ;
Adc [ idx ] . param1 = 0 ;
Adc [ idx ] . param2 = 0 ;
Adc [ idx ] . param3 = 0 ;
Adc [ idx ] . param4 = 0 ;
2020-11-04 10:20:17 +00:00
if ( strchr ( SettingsText ( SET_ADC_PARAM1 + idx ) , ' , ' ) ! = nullptr ) {
2020-08-04 15:33:05 +01:00
Adcs . type = atoi ( subStr ( parameters , SettingsText ( SET_ADC_PARAM1 + idx ) , " , " , 1 ) ) ;
Adc [ idx ] . param1 = atoi ( subStr ( parameters , SettingsText ( SET_ADC_PARAM1 + idx ) , " , " , 2 ) ) ;
Adc [ idx ] . param2 = atoi ( subStr ( parameters , SettingsText ( SET_ADC_PARAM1 + idx ) , " , " , 3 ) ) ;
Adc [ idx ] . param3 = atoi ( subStr ( parameters , SettingsText ( SET_ADC_PARAM1 + idx ) , " , " , 4 ) ) ;
Adc [ idx ] . param4 = atoi ( subStr ( parameters , SettingsText ( SET_ADC_PARAM1 + idx ) , " , " , 5 ) ) ;
}
}
void AdcInitParams ( uint8_t idx ) {
if ( ( Adcs . type ! = Adc [ idx ] . type ) | | ( Adc [ idx ] . param1 > 1000000 ) ) {
if ( ADC_TEMP = = Adc [ idx ] . type ) {
2020-08-03 17:21:34 +01:00
// Default Shelly 2.5 and 1PM parameters
2020-08-04 15:33:05 +01:00
Adc [ idx ] . param1 = ANALOG_NTC_BRIDGE_RESISTANCE ;
Adc [ idx ] . param2 = ANALOG_NTC_RESISTANCE ;
Adc [ idx ] . param3 = ANALOG_NTC_B_COEFFICIENT * 10000 ;
2022-09-25 21:40:29 +01:00
Adc [ idx ] . param4 = 0 ; // Default to Shelly mode with NTC towards GND
2020-08-03 17:21:34 +01:00
}
2020-08-04 15:33:05 +01:00
else if ( ADC_LIGHT = = Adc [ idx ] . type ) {
Adc [ idx ] . param1 = ANALOG_LDR_BRIDGE_RESISTANCE ;
Adc [ idx ] . param2 = ANALOG_LDR_LUX_CALC_SCALAR ;
Adc [ idx ] . param3 = ANALOG_LDR_LUX_CALC_EXPONENT * 10000 ;
2020-08-03 17:21:34 +01:00
}
2020-08-04 15:33:05 +01:00
else if ( ADC_RANGE = = Adc [ idx ] . type ) {
Adc [ idx ] . param1 = 0 ;
Adc [ idx ] . param2 = ANALOG_RANGE ;
Adc [ idx ] . param3 = 0 ;
Adc [ idx ] . param4 = 100 ;
2020-08-03 17:21:34 +01:00
}
2020-08-04 15:33:05 +01:00
else if ( ADC_CT_POWER = = Adc [ idx ] . type ) {
2020-08-06 13:39:01 +01:00
Adc [ idx ] . param1 = ANALOG_CT_FLAGS ; // (uint32_t) 0
Adc [ idx ] . param2 = ANALOG_CT_MULTIPLIER ; // (uint32_t) 100000
Adc [ idx ] . param3 = ANALOG_CT_VOLTAGE ; // (int) 10
2020-08-03 17:21:34 +01:00
}
2021-01-05 13:31:13 +00:00
else if ( ADC_PH = = Adc [ idx ] . type ) {
Adc [ idx ] . param1 = ANALOG_PH_CALSOLUTION_LOW_PH * ANALOG_PH_DECIMAL_MULTIPLIER ; // PH of the calibration solution 1, which is the one with the lower PH
Adc [ idx ] . param2 = ANALOG_PH_CALSOLUTION_LOW_ANALOG_VALUE ; // Reading of AnalogInput while probe is in solution 1
Adc [ idx ] . param3 = ANALOG_PH_CALSOLUTION_HIGH_PH * ANALOG_PH_DECIMAL_MULTIPLIER ; // PH of the calibration solution 2, which is the one with the higher PH
Adc [ idx ] . param4 = ANALOG_PH_CALSOLUTION_HIGH_ANALOG_VALUE ; // Reading of AnalogInput while probe is in solution 2
}
2022-01-23 16:10:35 +00:00
else if ( ADC_MQ = = Adc [ idx ] . type ) {
Adc [ idx ] . param1 = ANALOG_MQ_TYPE ; // Could be MQ-002, MQ-004, MQ-131 ....
Adc [ idx ] . param2 = ( int ) ( ANALOG_MQ_A * ANALOG_MQ_DECIMAL_MULTIPLIER ) ; // Exponential regression
Adc [ idx ] . param3 = ( int ) ( ANALOG_MQ_B * ANALOG_MQ_DECIMAL_MULTIPLIER ) ; // Exponential regression
Adc [ idx ] . param4 = ( int ) ( ANALOG_MQ_RatioMQCleanAir * ANALOG_MQ_DECIMAL_MULTIPLIER ) ; // Exponential regression
}
2020-10-09 10:20:22 +01:00
}
if ( ( Adcs . type ! = Adc [ idx ] . type ) | | ( 0 = = Adc [ idx ] . param1 ) | | ( Adc [ idx ] . param1 > ANALOG_RANGE ) ) {
if ( ( ADC_BUTTON = = Adc [ idx ] . type ) | | ( ADC_BUTTON_INV = = Adc [ idx ] . type ) ) {
Adc [ idx ] . param1 = ANALOG_BUTTON ;
}
2020-08-04 15:33:05 +01:00
else if ( ADC_JOY = = Adc [ idx ] . type ) {
2020-08-06 13:39:01 +01:00
Adc [ idx ] . param1 = ANALOG_JOYSTICK ;
2020-08-04 15:33:05 +01:00
}
}
}
2022-01-23 22:54:29 +00:00
void AdcAttach ( uint32_t pin , uint8_t type ) {
2020-10-08 17:27:12 +01:00
if ( Adcs . present = = MAX_ADCS ) { return ; }
2020-08-04 15:33:05 +01:00
Adc [ Adcs . present ] . pin = pin ;
if ( adcAttachPin ( Adc [ Adcs . present ] . pin ) ) {
Adc [ Adcs . present ] . type = type ;
// analogSetPinAttenuation(Adc[Adcs.present].pin, ADC_11db); // Default
Adcs . present + + ;
2020-08-03 17:21:34 +01:00
}
}
void AdcInit ( void ) {
2020-08-04 15:33:05 +01:00
Adcs . present = 0 ;
2020-08-03 17:21:34 +01:00
for ( uint32_t i = 0 ; i < MAX_ADCS ; i + + ) {
if ( PinUsed ( GPIO_ADC_INPUT , i ) ) {
2020-08-04 15:33:05 +01:00
AdcAttach ( Pin ( GPIO_ADC_INPUT , i ) , ADC_INPUT ) ;
2020-08-03 17:21:34 +01:00
}
if ( PinUsed ( GPIO_ADC_TEMP , i ) ) {
2020-08-04 15:33:05 +01:00
AdcAttach ( Pin ( GPIO_ADC_TEMP , i ) , ADC_TEMP ) ;
2020-08-03 17:21:34 +01:00
}
if ( PinUsed ( GPIO_ADC_LIGHT , i ) ) {
2020-08-04 15:33:05 +01:00
AdcAttach ( Pin ( GPIO_ADC_LIGHT , i ) , ADC_LIGHT ) ;
2020-08-03 17:21:34 +01:00
}
if ( PinUsed ( GPIO_ADC_RANGE , i ) ) {
2020-08-04 15:33:05 +01:00
AdcAttach ( Pin ( GPIO_ADC_RANGE , i ) , ADC_RANGE ) ;
2020-08-03 17:21:34 +01:00
}
if ( PinUsed ( GPIO_ADC_CT_POWER , i ) ) {
2020-08-04 15:33:05 +01:00
AdcAttach ( Pin ( GPIO_ADC_CT_POWER , i ) , ADC_CT_POWER ) ;
}
if ( PinUsed ( GPIO_ADC_JOY , i ) ) {
AdcAttach ( Pin ( GPIO_ADC_JOY , i ) , ADC_JOY ) ;
2020-08-03 17:21:34 +01:00
}
2021-01-05 13:31:13 +00:00
if ( PinUsed ( GPIO_ADC_PH , i ) ) {
AdcAttach ( Pin ( GPIO_ADC_PH , i ) , ADC_PH ) ;
}
2022-01-23 16:10:35 +00:00
if ( PinUsed ( GPIO_ADC_MQ , i ) ) {
AdcAttach ( Pin ( GPIO_ADC_MQ , i ) , ADC_MQ ) ;
}
2020-08-03 17:21:34 +01:00
}
2020-10-08 17:27:12 +01:00
for ( uint32_t i = 0 ; i < MAX_KEYS ; i + + ) {
if ( PinUsed ( GPIO_ADC_BUTTON , i ) ) {
AdcAttach ( Pin ( GPIO_ADC_BUTTON , i ) , ADC_BUTTON ) ;
}
else if ( PinUsed ( GPIO_ADC_BUTTON_INV , i ) ) {
AdcAttach ( Pin ( GPIO_ADC_BUTTON_INV , i ) , ADC_BUTTON_INV ) ;
}
}
2020-08-04 15:33:05 +01:00
if ( Adcs . present ) {
2020-09-25 17:15:31 +01:00
# ifdef ESP32
2023-08-05 14:11:10 +01:00
# if ESP_IDF_VERSION_MAJOR < 5
2020-08-04 15:33:05 +01:00
analogSetClockDiv ( 1 ) ; // Default 1
2023-08-05 14:11:10 +01:00
# endif
2021-02-02 16:55:45 +00:00
# if CONFIG_IDF_TARGET_ESP32
2020-08-04 15:33:05 +01:00
analogSetWidth ( ANALOG_RESOLUTION ) ; // Default 12 bits (0 - 4095)
2021-02-02 16:55:45 +00:00
# endif // CONFIG_IDF_TARGET_ESP32
2020-08-04 15:33:05 +01:00
analogSetAttenuation ( ADC_11db ) ; // Default 11db
2020-09-25 17:15:31 +01:00
# endif
2020-08-04 15:33:05 +01:00
for ( uint32_t idx = 0 ; idx < Adcs . present ; idx + + ) {
AdcGetSettings ( idx ) ;
AdcInitParams ( idx ) ;
AdcSaveSettings ( idx ) ;
}
2020-08-03 17:21:34 +01:00
}
}
2024-01-07 14:10:19 +00:00
uint32_t AdcResolution ( void ) {
return ANALOG_RESOLUTION ;
}
bool AdcPin ( uint32_t pin ) {
for ( uint32_t idx = 0 ; idx < Adcs . present ; idx + + ) {
if ( pin = = Adc [ idx ] . pin ) {
return true ;
}
}
return false ;
}
2020-08-04 15:33:05 +01:00
uint16_t AdcRead ( uint32_t pin , uint32_t factor ) {
2020-08-03 17:21:34 +01:00
// factor 1 = 2 samples
// factor 2 = 4 samples
// factor 3 = 8 samples
// factor 4 = 16 samples
// factor 5 = 32 samples
2023-05-24 16:24:48 +01:00
SystemBusyDelayExecute ( ) ;
2023-05-24 15:21:59 +01:00
2020-08-04 15:33:05 +01:00
uint32_t samples = 1 < < factor ;
uint32_t analog = 0 ;
2020-08-03 17:21:34 +01:00
for ( uint32_t i = 0 ; i < samples ; i + + ) {
2023-10-15 10:57:13 +01:00
# ifdef ESP32
analog + = analogReadMilliVolts ( pin ) ; // get the value corrected by calibrated values from the eFuses
# else
2020-08-03 17:21:34 +01:00
analog + = analogRead ( pin ) ;
2023-10-15 10:57:13 +01:00
# endif
2020-08-03 17:21:34 +01:00
delay ( 1 ) ;
}
analog > > = factor ;
2023-10-15 10:57:13 +01:00
# ifdef ESP32
analog = analog / ( ANALOG_V33 * 1000 ) * ANALOG_RANGE ; // go back from mV to ADC
# endif
2020-08-03 17:21:34 +01:00
return analog ;
}
# ifdef USE_RULES
void AdcEvery250ms ( void ) {
2020-09-29 17:10:21 +01:00
char adc_idx [ 3 ] = { 0 } ;
uint32_t offset = 0 ;
2020-08-04 15:33:05 +01:00
for ( uint32_t idx = 0 ; idx < Adcs . present ; idx + + ) {
2020-09-29 17:10:21 +01:00
# ifdef ESP32
snprintf_P ( adc_idx , sizeof ( adc_idx ) , PSTR ( " %d " ) , idx + 1 ) ;
offset = 1 ;
# endif
2020-08-03 17:21:34 +01:00
if ( ADC_INPUT = = Adc [ idx ] . type ) {
uint16_t new_value = AdcRead ( Adc [ idx ] . pin , 5 ) ;
2020-12-15 23:56:08 +00:00
if ( ( new_value < Adc [ idx ] . last_value - ANALOG_PERCENT ) | | ( new_value > Adc [ idx ] . last_value + ANALOG_PERCENT ) ) {
2020-08-03 17:21:34 +01:00
Adc [ idx ] . last_value = new_value ;
2020-12-15 23:56:08 +00:00
uint16_t value = Adc [ idx ] . last_value / ANALOG_PERCENT ;
2020-09-29 17:10:21 +01:00
Response_P ( PSTR ( " { \" ANALOG \" :{ \" A%ddiv10 \" :%d}} " ) , idx + offset , ( value > 99 ) ? 100 : value ) ;
2021-04-04 11:04:36 +01:00
XdrvRulesProcess ( 0 ) ;
2020-08-03 17:21:34 +01:00
}
}
2020-08-04 15:33:05 +01:00
else if ( ADC_JOY = = Adc [ idx ] . type ) {
uint16_t new_value = AdcRead ( Adc [ idx ] . pin , 1 ) ;
if ( new_value & & ( new_value ! = Adc [ idx ] . last_value ) ) {
Adc [ idx ] . last_value = new_value ;
uint16_t value = new_value / Adc [ idx ] . param1 ;
2020-09-29 17:10:21 +01:00
Response_P ( PSTR ( " { \" ANALOG \" :{ \" Joy%s \" :%d}} " ) , adc_idx , value ) ;
2021-04-04 11:04:36 +01:00
XdrvRulesProcess ( 0 ) ;
2020-08-04 15:33:05 +01:00
} else {
Adc [ idx ] . last_value = 0 ;
}
}
2020-08-03 17:21:34 +01:00
}
}
# endif // USE_RULES
2020-10-08 17:27:12 +01:00
uint8_t AdcGetButton ( uint32_t pin ) {
for ( uint32_t idx = 0 ; idx < Adcs . present ; idx + + ) {
if ( Adc [ idx ] . pin = = pin ) {
if ( ADC_BUTTON_INV = = Adc [ idx ] . type ) {
2020-10-09 10:20:22 +01:00
return ( AdcRead ( Adc [ idx ] . pin , 1 ) < Adc [ idx ] . param1 ) ;
2020-10-08 17:27:12 +01:00
}
else if ( ADC_BUTTON = = Adc [ idx ] . type ) {
2020-10-09 10:20:22 +01:00
return ( AdcRead ( Adc [ idx ] . pin , 1 ) > Adc [ idx ] . param1 ) ;
2020-10-08 17:27:12 +01:00
}
}
2020-09-29 13:08:48 +01:00
}
2020-10-08 17:27:12 +01:00
return 0 ;
2020-09-29 13:08:48 +01:00
}
2020-08-04 15:33:05 +01:00
uint16_t AdcGetLux ( uint32_t idx ) {
int adc = AdcRead ( Adc [ idx ] . pin , 2 ) ;
2020-08-03 17:21:34 +01:00
// Source: https://www.allaboutcircuits.com/projects/design-a-luxmeter-using-a-light-dependent-resistor/
2020-08-04 15:33:05 +01:00
double resistorVoltage = ( ( double ) adc / ANALOG_RANGE ) * ANALOG_V33 ;
2020-08-03 17:21:34 +01:00
double ldrVoltage = ANALOG_V33 - resistorVoltage ;
2020-08-04 15:33:05 +01:00
double ldrResistance = ldrVoltage / resistorVoltage * ( double ) Adc [ idx ] . param1 ;
double ldrLux = ( double ) Adc [ idx ] . param2 * FastPrecisePow ( ldrResistance , ( double ) Adc [ idx ] . param3 / 10000 ) ;
2020-08-03 17:21:34 +01:00
return ( uint16_t ) ldrLux ;
}
2022-01-23 22:54:29 +00:00
void AddSampleMq ( uint32_t idx ) {
2022-12-12 09:57:21 +00:00
// AddLog(LOG_LEVEL_DEBUG, PSTR("ADC: Adding sample for mq-sensor"));
2022-01-23 22:54:29 +00:00
int _adc = AdcRead ( Adc [ idx ] . pin , 2 ) ;
// init af array at same value
2022-12-12 09:57:21 +00:00
if ( Adc [ idx ] . indexOfPointer = = - 1 ) {
// AddLog(LOG_LEVEL_DEBUG, PSTR("ADC: Init samples for mq-sensor"));
for ( int i = 0 ; i < ANALOG_MQ_SAMPLES ; i + + ) {
2022-01-23 22:54:29 +00:00
Adc [ idx ] . mq_samples [ i ] = _adc ;
2022-12-12 09:57:21 +00:00
}
} else {
2022-01-23 22:54:29 +00:00
Adc [ idx ] . mq_samples [ Adc [ idx ] . indexOfPointer ] = _adc ;
2022-12-12 09:57:21 +00:00
}
2022-01-23 22:54:29 +00:00
Adc [ idx ] . indexOfPointer + + ;
2022-12-12 09:57:21 +00:00
if ( Adc [ idx ] . indexOfPointer = = ANALOG_MQ_SAMPLES ) {
2022-01-23 22:54:29 +00:00
Adc [ idx ] . indexOfPointer = 0 ;
2022-12-12 09:57:21 +00:00
}
2022-01-23 22:54:29 +00:00
}
2022-01-23 16:10:35 +00:00
float AdcGetMq ( uint32_t idx ) {
2022-12-12 09:57:21 +00:00
// AddLog(LOG_LEVEL_DEBUG, PSTR("ADC: Getting value for mq-sensor"));
2022-01-23 16:10:35 +00:00
float avg = 0.0 ;
2022-12-12 09:57:21 +00:00
for ( int i = 0 ; i < ANALOG_MQ_SAMPLES ; i + + ) {
2022-01-23 22:54:29 +00:00
avg + = Adc [ idx ] . mq_samples [ i ] ;
2022-12-12 09:57:21 +00:00
}
2022-08-22 13:32:08 +01:00
float voltage = ( avg / ANALOG_MQ_SAMPLES ) * ANALOG_V33 / ANALOG_RANGE ;
2022-01-23 16:10:35 +00:00
2022-12-12 09:57:21 +00:00
float _RL = 10 ; // Value in KiloOhms
float _RS_Calc = ( ( ANALOG_V33 * _RL ) / voltage ) - _RL ; // Get value of RS in a gas
if ( _RS_Calc < 0 ) {
_RS_Calc = 0 ; // No negative values accepted.
}
float _R0 = 10 ;
float _ratio = _RS_Calc / _R0 ; // Get ratio RS_gas/RS_air
float ppm = Adc [ idx ] . param2 / ANALOG_MQ_DECIMAL_MULTIPLIER * FastPrecisePow ( _ratio , Adc [ idx ] . param3 / ANALOG_MQ_DECIMAL_MULTIPLIER ) ; // Source excel analisis https://github.com/miguel5612/MQSensorsLib_Docs/tree/master/Internal_design_documents
if ( ppm < 0 ) { ppm = 0 ; } // No negative values accepted or upper datasheet recomendation.
if ( ppm > 100000 ) { ppm = 100000 ; }
// AddLog(LOG_LEVEL_DEBUG, PSTR("ADC: Ppm read. ADC-RAW: %2_f, ppm: %2_f"), &voltage, &ppm);
2022-01-23 16:10:35 +00:00
return ppm ;
}
2021-01-05 13:31:13 +00:00
float AdcGetPh ( uint32_t idx ) {
int adc = AdcRead ( Adc [ idx ] . pin , 2 ) ;
2021-01-05 15:25:56 +00:00
2022-01-04 15:33:35 +00:00
float y1 = ( float ) Adc [ idx ] . param1 / ANALOG_PH_DECIMAL_MULTIPLIER ;
int32_t x1 = Adc [ idx ] . param2 ;
float y2 = ( float ) Adc [ idx ] . param3 / ANALOG_PH_DECIMAL_MULTIPLIER ;
int32_t x2 = Adc [ idx ] . param4 ;
2021-01-05 13:31:13 +00:00
2022-01-04 15:33:35 +00:00
float m = ( y2 - y1 ) / ( float ) ( x2 - x1 ) ;
float ph = m * ( float ) ( adc - x1 ) + y1 ;
2021-01-23 16:10:06 +00:00
2022-12-12 09:57:21 +00:00
// AddLog(LOG_LEVEL_DEBUG, PSTR("ADC: Analog pH read. ADC-RAW: %d, cal-low(pH=ADC): %2_f = %d, cal-high(pH=ADC): %2_f = %d"), adc, &y1, x1, &y2, x2);
2021-01-23 16:10:06 +00:00
2021-01-05 13:31:13 +00:00
return ph ;
}
2021-04-02 14:50:59 +01:00
float AdcGetRange ( uint32_t idx ) {
2020-08-03 17:21:34 +01:00
// formula for calibration: value, fromLow, fromHigh, toLow, toHigh
// Example: 514, 632, 236, 0, 100
// int( ((<param2> - <analog-value>) / (<param2> - <param1>) ) * (<param3> - <param4>) ) + <param4> )
2023-02-17 21:33:06 +00:00
int adc = AdcRead ( Adc [ idx ] . pin , 5 ) ;
2020-08-04 15:33:05 +01:00
double adcrange = ( ( ( double ) Adc [ idx ] . param2 - ( double ) adc ) / ( ( ( double ) Adc [ idx ] . param2 - ( double ) Adc [ idx ] . param1 ) ) * ( ( double ) Adc [ idx ] . param3 - ( double ) Adc [ idx ] . param4 ) + ( double ) Adc [ idx ] . param4 ) ;
2021-04-02 14:50:59 +01:00
return ( float ) adcrange ;
2020-08-03 17:21:34 +01:00
}
void AdcGetCurrentPower ( uint8_t idx , uint8_t factor ) {
// factor 1 = 2 samples
// factor 2 = 4 samples
// factor 3 = 8 samples
// factor 4 = 16 samples
// factor 5 = 32 samples
uint8_t samples = 1 < < factor ;
uint16_t analog = 0 ;
2020-08-04 15:33:05 +01:00
uint16_t analog_min = ANALOG_RANGE ;
2020-08-03 17:21:34 +01:00
uint16_t analog_max = 0 ;
2020-08-04 15:33:05 +01:00
if ( 0 = = Adc [ idx ] . param1 ) {
2023-04-08 20:31:50 +01:00
unsigned long tstart = millis ( ) ;
while ( millis ( ) - tstart < 35 ) {
2020-08-03 17:21:34 +01:00
analog = analogRead ( Adc [ idx ] . pin ) ;
if ( analog < analog_min ) {
analog_min = analog ;
}
if ( analog > analog_max ) {
analog_max = analog ;
}
}
2023-04-08 20:31:50 +01:00
//AddLog(0, PSTR("min: %u, max:%u, dif:%u"), analog_min, analog_max, analog_max-analog_min);
2020-08-04 15:33:05 +01:00
Adc [ idx ] . current = ( float ) ( analog_max - analog_min ) * ( ( float ) ( Adc [ idx ] . param2 ) / 100000 ) ;
2023-04-08 20:31:50 +01:00
if ( Adc [ idx ] . current < ( ( ( float ) Adc [ idx ] . param4 ) / 10000.0 ) )
Adc [ idx ] . current = 0.0 ;
2020-08-03 17:21:34 +01:00
}
else {
analog = AdcRead ( Adc [ idx ] . pin , 5 ) ;
2020-08-04 15:33:05 +01:00
if ( analog > Adc [ idx ] . param1 ) {
Adc [ idx ] . current = ( ( float ) ( analog ) - ( float ) Adc [ idx ] . param1 ) * ( ( float ) ( Adc [ idx ] . param2 ) / 100000 ) ;
2020-08-03 17:21:34 +01:00
}
else {
Adc [ idx ] . current = 0 ;
}
}
2020-08-04 15:33:05 +01:00
float power = Adc [ idx ] . current * ( float ) ( Adc [ idx ] . param3 ) / 10 ;
2020-08-03 17:21:34 +01:00
uint32_t current_millis = millis ( ) ;
Adc [ idx ] . energy = Adc [ idx ] . energy + ( ( power * ( current_millis - Adc [ idx ] . previous_millis ) ) / 3600000000 ) ;
Adc [ idx ] . previous_millis = current_millis ;
}
void AdcEverySecond ( void ) {
2020-08-04 15:33:05 +01:00
for ( uint32_t idx = 0 ; idx < Adcs . present ; idx + + ) {
2020-08-03 17:21:34 +01:00
if ( ADC_TEMP = = Adc [ idx ] . type ) {
int adc = AdcRead ( Adc [ idx ] . pin , 2 ) ;
2021-11-16 22:10:25 +00:00
// Steinhart-Hart equation for thermistor as temperature sensor:
// double Rt = (adc * Adc[idx].param1 * MAX_ADC_V) / (ANALOG_RANGE * ANALOG_V33 - (double)adc * MAX_ADC_V);
// MAX_ADC_V in ESP8266 is 1
// MAX_ADC_V in ESP32 is 3.3
2022-09-27 22:05:53 +01:00
double Rt ;
# ifdef ESP8266
2022-09-25 21:40:29 +01:00
if ( Adc [ idx ] . param4 ) { // Alternate mode
2022-09-27 22:05:53 +01:00
Rt = ( double ) Adc [ idx ] . param1 * ( ANALOG_RANGE * ANALOG_V33 - ( double ) adc ) / ( double ) adc ;
} else {
Rt = ( double ) Adc [ idx ] . param1 * ( double ) adc / ( ANALOG_RANGE * ANALOG_V33 - ( double ) adc ) ;
2022-09-25 21:40:29 +01:00
}
2021-11-16 22:10:25 +00:00
# else
2022-09-27 22:05:53 +01:00
if ( Adc [ idx ] . param4 ) { // Alternate mode
Rt = ( double ) Adc [ idx ] . param1 * ( ANALOG_RANGE - ( double ) adc ) / ( double ) adc ;
} else {
Rt = ( double ) Adc [ idx ] . param1 * ( double ) adc / ( ANALOG_RANGE - ( double ) adc ) ;
}
2022-01-04 15:33:35 +00:00
# endif
2021-02-10 14:56:06 +00:00
double BC = ( double ) Adc [ idx ] . param3 / 10000 ; // Shelly param3 = 3350 (ANALOG_NTC_B_COEFFICIENT)
double T = BC / ( BC / ANALOG_T0 + TaylorLog ( Rt / ( double ) Adc [ idx ] . param2 ) ) ; // Shelly param2 = 10000 (ANALOG_NTC_RESISTANCE)
2020-08-03 17:21:34 +01:00
Adc [ idx ] . temperature = ConvertTemp ( TO_CELSIUS ( T ) ) ;
}
else if ( ADC_CT_POWER = = Adc [ idx ] . type ) {
AdcGetCurrentPower ( idx , 5 ) ;
}
2022-01-23 18:19:32 +00:00
else if ( ADC_MQ = = Adc [ idx ] . type ) {
2022-01-23 22:54:29 +00:00
AddSampleMq ( idx ) ;
2022-01-23 18:19:32 +00:00
AdcGetMq ( idx ) ;
}
2020-08-03 17:21:34 +01:00
}
}
2020-08-04 17:01:51 +01:00
void AdcShowContinuation ( bool * jsonflg ) {
if ( * jsonflg ) {
ResponseAppend_P ( PSTR ( " , " ) ) ;
} else {
ResponseAppend_P ( PSTR ( " , \" ANALOG \" :{ " ) ) ;
* jsonflg = true ;
}
}
2020-08-03 17:21:34 +01:00
void AdcShow ( bool json ) {
bool domo_flag [ ADC_END ] = { false } ;
2020-09-25 17:15:31 +01:00
char adc_name [ 10 ] = { 0 } ; // ANALOG8
2020-09-29 17:10:21 +01:00
char adc_idx [ 3 ] = { 0 } ;
2020-09-25 17:15:31 +01:00
uint32_t offset = 0 ;
2020-08-04 17:01:51 +01:00
bool jsonflg = false ;
2020-08-04 15:33:05 +01:00
for ( uint32_t idx = 0 ; idx < Adcs . present ; idx + + ) {
2020-09-25 17:15:31 +01:00
# ifdef ESP32
2020-08-04 17:01:51 +01:00
snprintf_P ( adc_name , sizeof ( adc_name ) , PSTR ( " Analog%d " ) , idx + 1 ) ;
2020-09-29 17:10:21 +01:00
snprintf_P ( adc_idx , sizeof ( adc_idx ) , PSTR ( " %d " ) , idx + 1 ) ;
2020-09-25 17:15:31 +01:00
offset = 1 ;
# endif
2020-08-03 17:21:34 +01:00
switch ( Adc [ idx ] . type ) {
case ADC_INPUT : {
uint16_t analog = AdcRead ( Adc [ idx ] . pin , 5 ) ;
if ( json ) {
2020-08-04 17:01:51 +01:00
AdcShowContinuation ( & jsonflg ) ;
2020-09-25 17:15:31 +01:00
ResponseAppend_P ( PSTR ( " \" A%d \" :%d " ) , idx + offset , analog ) ;
2020-08-03 17:21:34 +01:00
# ifdef USE_WEBSERVER
} else {
2020-09-25 17:15:31 +01:00
WSContentSend_PD ( HTTP_SNS_ANALOG , " " , idx + offset , analog ) ;
2020-08-03 17:21:34 +01:00
# endif // USE_WEBSERVER
}
break ;
}
case ADC_TEMP : {
if ( json ) {
2020-08-04 17:01:51 +01:00
AdcShowContinuation ( & jsonflg ) ;
2021-06-11 17:14:12 +01:00
ResponseAppend_P ( PSTR ( " \" " D_JSON_TEMPERATURE " %s \" :%*_f " ) , adc_idx , Settings - > flag2 . temperature_resolution , & Adc [ idx ] . temperature ) ;
2020-10-29 12:37:09 +00:00
if ( ( 0 = = TasmotaGlobal . tele_period ) & & ( ! domo_flag [ ADC_TEMP ] ) ) {
2020-08-03 17:21:34 +01:00
# ifdef USE_DOMOTICZ
2021-01-26 15:26:00 +00:00
DomoticzFloatSensor ( DZ_TEMP , Adc [ idx ] . temperature ) ;
2020-08-03 17:21:34 +01:00
domo_flag [ ADC_TEMP ] = true ;
# endif // USE_DOMOTICZ
# ifdef USE_KNX
KnxSensor ( KNX_TEMPERATURE , Adc [ idx ] . temperature ) ;
# endif // USE_KNX
}
# ifdef USE_WEBSERVER
} else {
2021-01-26 15:26:00 +00:00
WSContentSend_Temp ( adc_name , Adc [ idx ] . temperature ) ;
2020-08-03 17:21:34 +01:00
# endif // USE_WEBSERVER
}
break ;
}
case ADC_LIGHT : {
2020-08-04 15:33:05 +01:00
uint16_t adc_light = AdcGetLux ( idx ) ;
2020-08-03 17:21:34 +01:00
if ( json ) {
2020-08-04 17:01:51 +01:00
AdcShowContinuation ( & jsonflg ) ;
2020-09-29 17:10:21 +01:00
ResponseAppend_P ( PSTR ( " \" " D_JSON_ILLUMINANCE " %s \" :%d " ) , adc_idx , adc_light ) ;
2020-08-03 17:21:34 +01:00
# ifdef USE_DOMOTICZ
2020-10-29 12:37:09 +00:00
if ( ( 0 = = TasmotaGlobal . tele_period ) & & ( ! domo_flag [ ADC_LIGHT ] ) ) {
2020-08-03 17:21:34 +01:00
DomoticzSensor ( DZ_ILLUMINANCE , adc_light ) ;
domo_flag [ ADC_LIGHT ] = true ;
}
# endif // USE_DOMOTICZ
# ifdef USE_WEBSERVER
} else {
WSContentSend_PD ( HTTP_SNS_ILLUMINANCE , adc_name , adc_light ) ;
# endif // USE_WEBSERVER
}
break ;
}
case ADC_RANGE : {
2021-04-02 14:50:59 +01:00
float adc_range = AdcGetRange ( idx ) ;
char range_chr [ FLOATSZ ] ;
2021-06-11 17:14:12 +01:00
dtostrfd ( adc_range , Settings - > flag2 . frequency_resolution , range_chr ) ;
2020-08-03 17:21:34 +01:00
if ( json ) {
2020-08-04 17:01:51 +01:00
AdcShowContinuation ( & jsonflg ) ;
2021-04-02 14:50:59 +01:00
ResponseAppend_P ( PSTR ( " \" " D_JSON_RANGE " %s \" :%s " ) , adc_idx , range_chr ) ;
2020-08-03 17:21:34 +01:00
# ifdef USE_WEBSERVER
} else {
2021-04-02 14:50:59 +01:00
WSContentSend_PD ( HTTP_SNS_RANGE_CHR , adc_name , range_chr ) ;
2020-08-03 17:21:34 +01:00
# endif // USE_WEBSERVER
}
break ;
}
case ADC_CT_POWER : {
AdcGetCurrentPower ( idx , 5 ) ;
2020-08-04 15:33:05 +01:00
float voltage = ( float ) ( Adc [ idx ] . param3 ) / 10 ;
2020-08-03 17:21:34 +01:00
char voltage_chr [ FLOATSZ ] ;
2021-06-11 17:14:12 +01:00
dtostrfd ( voltage , Settings - > flag2 . voltage_resolution , voltage_chr ) ;
2020-08-03 17:21:34 +01:00
char current_chr [ FLOATSZ ] ;
2021-06-11 17:14:12 +01:00
dtostrfd ( Adc [ idx ] . current , Settings - > flag2 . current_resolution , current_chr ) ;
2020-08-03 17:21:34 +01:00
char power_chr [ FLOATSZ ] ;
2021-06-11 17:14:12 +01:00
dtostrfd ( voltage * Adc [ idx ] . current , Settings - > flag2 . wattage_resolution , power_chr ) ;
2020-08-03 17:21:34 +01:00
char energy_chr [ FLOATSZ ] ;
2021-06-11 17:14:12 +01:00
dtostrfd ( Adc [ idx ] . energy , Settings - > flag2 . energy_resolution , energy_chr ) ;
2020-08-03 17:21:34 +01:00
if ( json ) {
2020-08-04 17:01:51 +01:00
AdcShowContinuation ( & jsonflg ) ;
2020-09-29 17:10:21 +01:00
ResponseAppend_P ( PSTR ( " \" CTEnergy%s \" :{ \" " D_JSON_ENERGY " \" :%s, \" " D_JSON_POWERUSAGE " \" :%s, \" " D_JSON_VOLTAGE " \" :%s, \" " D_JSON_CURRENT " \" :%s} " ) ,
adc_idx , energy_chr , power_chr , voltage_chr , current_chr ) ;
2020-08-03 17:21:34 +01:00
# ifdef USE_DOMOTICZ
2020-10-29 12:37:09 +00:00
if ( ( 0 = = TasmotaGlobal . tele_period ) & & ( ! domo_flag [ ADC_CT_POWER ] ) ) {
2020-08-03 17:21:34 +01:00
DomoticzSensor ( DZ_POWER_ENERGY , power_chr ) ;
DomoticzSensor ( DZ_VOLTAGE , voltage_chr ) ;
DomoticzSensor ( DZ_CURRENT , current_chr ) ;
domo_flag [ ADC_CT_POWER ] = true ;
}
# endif // USE_DOMOTICZ
# ifdef USE_WEBSERVER
} else {
WSContentSend_PD ( HTTP_SNS_VOLTAGE , voltage_chr ) ;
WSContentSend_PD ( HTTP_SNS_CURRENT , current_chr ) ;
WSContentSend_PD ( HTTP_SNS_POWER , power_chr ) ;
WSContentSend_PD ( HTTP_SNS_ENERGY_TOTAL , energy_chr ) ;
# endif // USE_WEBSERVER
}
break ;
}
2020-08-04 17:01:51 +01:00
case ADC_JOY : {
uint16_t new_value = AdcRead ( Adc [ idx ] . pin , 1 ) ;
uint16_t value = new_value / Adc [ idx ] . param1 ;
if ( json ) {
AdcShowContinuation ( & jsonflg ) ;
2020-09-29 17:10:21 +01:00
ResponseAppend_P ( PSTR ( " \" Joy%s \" :%d " ) , adc_idx , value ) ;
2020-08-04 17:01:51 +01:00
}
break ;
}
2021-01-05 13:31:13 +00:00
case ADC_PH : {
float ph = AdcGetPh ( idx ) ;
2022-12-12 09:57:21 +00:00
char ph_chr [ FLOATSZ ] ;
2021-01-05 13:31:13 +00:00
dtostrfd ( ph , 2 , ph_chr ) ;
if ( json ) {
AdcShowContinuation ( & jsonflg ) ;
ResponseAppend_P ( PSTR ( " \" pH%d \" :%s " ) , idx + offset , ph_chr ) ;
# ifdef USE_WEBSERVER
} else {
WSContentSend_PD ( HTTP_SNS_PH , " " , ph_chr ) ;
2022-01-23 16:10:35 +00:00
# endif // USE_WEBSERVER
}
break ;
}
case ADC_MQ : {
float mq = AdcGetMq ( idx ) ;
2022-12-12 09:57:21 +00:00
char mq_chr [ FLOATSZ ] ;
2022-01-23 16:10:35 +00:00
dtostrfd ( mq , 2 , mq_chr ) ;
float mqnumber = Adc [ idx ] . param1 ;
2022-12-12 09:57:21 +00:00
char mqnumber_chr [ FLOATSZ ] ;
2022-01-23 16:10:35 +00:00
dtostrfd ( mqnumber , 0 , mqnumber_chr ) ;
if ( json ) {
AdcShowContinuation ( & jsonflg ) ;
ResponseAppend_P ( PSTR ( " \" MQ%d_%d \" :%s " ) , Adc [ idx ] . param1 , idx + offset , mq_chr ) ;
# ifdef USE_WEBSERVER
} else {
WSContentSend_PD ( HTTP_SNS_MQ , mqnumber_chr , mq_chr ) ;
2021-01-05 13:31:13 +00:00
# endif // USE_WEBSERVER
}
break ;
}
2020-08-03 17:21:34 +01:00
}
}
2020-08-04 17:01:51 +01:00
if ( jsonflg ) {
ResponseJsonEnd ( ) ;
}
2020-08-03 17:21:34 +01:00
}
/*********************************************************************************************\
* Commands
\ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
const char kAdcCommands [ ] PROGMEM = " | " // No prefix
D_CMND_ADCPARAM ;
void ( * const AdcCommand [ ] ) ( void ) PROGMEM = {
& CmndAdcParam } ;
void CmndAdcParam ( void ) {
2020-08-04 15:33:05 +01:00
if ( ( XdrvMailbox . index > 0 ) & & ( XdrvMailbox . index < = MAX_ADCS ) ) {
uint8_t idx = XdrvMailbox . index - 1 ;
if ( XdrvMailbox . data_len ) {
2020-10-09 10:20:22 +01:00
if ( XdrvMailbox . payload > ADC_INPUT ) {
2020-08-04 15:33:05 +01:00
AdcGetSettings ( idx ) ;
2021-01-30 11:27:48 +00:00
if ( ArgC ( ) > 3 ) { // Process parameter entry
char argument [ XdrvMailbox . data_len ] ;
2022-09-25 21:40:29 +01:00
// AdcParam 2, 32000, 10000, 3350 ADC_TEMP Shelly mode
// AdcParam 2, 32000, 10000, 3350, 1 ADC_TEMP Alternate mode
2020-08-04 15:33:05 +01:00
// AdcParam 3, 10000, 12518931, -1.405
2020-10-09 10:20:22 +01:00
// AdcParam 4, 128, 0, 0
// AdcParam 5, 128, 0, 0
2020-08-04 15:33:05 +01:00
// AdcParam 6, 0, ANALOG_RANGE, 0, 100
// AdcParam 7, 0, 2146, 0.23
// AdcParam 8, 1000, 0, 0
Adc [ idx ] . type = XdrvMailbox . payload ;
2021-01-30 11:27:48 +00:00
Adc [ idx ] . param1 = strtol ( ArgV ( argument , 2 ) , nullptr , 10 ) ;
Adc [ idx ] . param2 = strtol ( ArgV ( argument , 3 ) , nullptr , 10 ) ;
2020-08-04 15:33:05 +01:00
if ( ADC_RANGE = = XdrvMailbox . payload ) {
2021-01-30 11:27:48 +00:00
Adc [ idx ] . param3 = abs ( strtol ( ArgV ( argument , 4 ) , nullptr , 10 ) ) ;
Adc [ idx ] . param4 = abs ( strtol ( ArgV ( argument , 5 ) , nullptr , 10 ) ) ;
2020-08-04 15:33:05 +01:00
} else {
2021-01-30 11:27:48 +00:00
Adc [ idx ] . param3 = ( int ) ( CharToFloat ( ArgV ( argument , 4 ) ) * 10000 ) ;
2022-09-25 21:40:29 +01:00
if ( ArgC ( ) > 4 ) {
Adc [ idx ] . param4 = ( int ) ( CharToFloat ( ArgV ( argument , 5 ) ) * 10000 ) ;
}
else {
Adc [ idx ] . param4 = 0 ;
}
2020-08-04 15:33:05 +01:00
}
2021-01-05 13:31:13 +00:00
if ( ADC_PH = = XdrvMailbox . payload ) {
2021-01-30 11:27:48 +00:00
float phLow = CharToFloat ( ArgV ( argument , 2 ) ) ;
float phHigh = CharToFloat ( ArgV ( argument , 4 ) ) ;
2021-01-05 13:31:13 +00:00
Adc [ idx ] . param1 = phLow * ANALOG_PH_DECIMAL_MULTIPLIER ;
2021-01-30 11:27:48 +00:00
Adc [ idx ] . param2 = strtol ( ArgV ( argument , 3 ) , nullptr , 10 ) ;
2021-01-05 13:31:13 +00:00
Adc [ idx ] . param3 = phHigh * ANALOG_PH_DECIMAL_MULTIPLIER ;
2021-01-30 11:27:48 +00:00
Adc [ idx ] . param4 = strtol ( ArgV ( argument , 5 ) , nullptr , 10 ) ;
2022-12-12 09:57:21 +00:00
// AddLog(LOG_LEVEL_INFO, PSTR("ADC: Analog pH probe calibrated. cal-low(pH=ADC) %2_f = %d, cal-high(pH=ADC) %2_f = %d"), &phLow, Adc[idx].param2, &phHigh, Adc[idx].param4);
2021-01-05 13:31:13 +00:00
}
2020-08-04 15:33:05 +01:00
if ( ADC_CT_POWER = = XdrvMailbox . payload ) {
if ( ( ( 1 = = Adc [ idx ] . param1 ) & CT_FLAG_ENERGY_RESET ) > 0 ) {
for ( uint32_t idx = 0 ; idx < MAX_ADCS ; idx + + ) {
Adc [ idx ] . energy = 0 ;
}
Adc [ idx ] . param1 ^ = CT_FLAG_ENERGY_RESET ; // Cancel energy reset flag
2020-08-03 17:21:34 +01:00
}
}
2022-01-23 16:10:35 +00:00
if ( ADC_MQ = = XdrvMailbox . payload ) {
float a = CharToFloat ( ArgV ( argument , 3 ) ) ;
float b = CharToFloat ( ArgV ( argument , 4 ) ) ;
float ratioMQCleanAir = CharToFloat ( ArgV ( argument , 5 ) ) ;
if ( a = = 0 & & b = = 0 & & ratioMQCleanAir = = 0 )
{
if ( Adc [ idx ] . param1 = = 2 )
{
a = 574.25 ;
2022-01-23 16:28:13 +00:00
b = - 2.222 ;
ratioMQCleanAir = 9.83 ;
2022-01-23 16:10:35 +00:00
}
if ( Adc [ idx ] . param1 = = 4 )
{
2022-01-23 16:28:13 +00:00
a = 1012.7 ;
b = - 2.786 ;
ratioMQCleanAir = 4.4 ;
2022-01-23 16:10:35 +00:00
}
if ( Adc [ idx ] . param1 = = 7 )
{
2022-01-23 16:28:13 +00:00
a = 99.042 ;
b = - 1.518 ;
ratioMQCleanAir = 27.5 ;
2022-01-23 16:10:35 +00:00
}
if ( Adc [ idx ] . param1 = = 131 )
{
2022-01-23 16:28:13 +00:00
a = 23.943 ;
b = - 1.11 ;
ratioMQCleanAir = 15 ;
2022-01-23 16:10:35 +00:00
}
}
2022-12-12 09:57:21 +00:00
Adc [ idx ] . param2 = ( int ) ( a * ANALOG_MQ_DECIMAL_MULTIPLIER ) ; // Exponential regression
Adc [ idx ] . param3 = ( int ) ( b * ANALOG_MQ_DECIMAL_MULTIPLIER ) ; // Exponential regression
Adc [ idx ] . param4 = ( int ) ( ratioMQCleanAir * ANALOG_MQ_DECIMAL_MULTIPLIER ) ; // Exponential regression
// AddLog(LOG_LEVEL_INFO, PSTR("ADC: MQ reset mq%d, a = %2_f, b = %2_f, ratioMQCleanAir = %2_f"), Adc[idx].param1, &a, &b, &ratioMQCleanAir);
2022-01-23 16:10:35 +00:00
}
2020-08-04 15:33:05 +01:00
} else { // Set default values based on current adc type
// AdcParam 2
// AdcParam 3
2020-10-09 10:20:22 +01:00
// AdcParam 4
// AdcParam 5
2020-08-04 15:33:05 +01:00
// AdcParam 6
// AdcParam 7
// AdcParam 8
Adcs . type = 0 ;
AdcInitParams ( idx ) ;
2020-08-03 17:21:34 +01:00
}
2020-08-04 15:33:05 +01:00
AdcSaveSettings ( idx ) ;
2020-08-03 17:21:34 +01:00
}
}
2020-08-04 15:33:05 +01:00
// AdcParam
AdcGetSettings ( idx ) ;
Response_P ( PSTR ( " { \" " D_CMND_ADCPARAM " %d \" :[%d,%d,%d " ) , idx + 1 , Adcs . type , Adc [ idx ] . param1 , Adc [ idx ] . param2 ) ;
2022-01-23 16:10:35 +00:00
if ( ( ADC_RANGE = = Adc [ idx ] . type ) | | ( ADC_MQ = = Adc [ idx ] . type ) ) {
2020-08-04 15:33:05 +01:00
ResponseAppend_P ( PSTR ( " ,%d,%d " ) , Adc [ idx ] . param3 , Adc [ idx ] . param4 ) ;
} else {
int value = Adc [ idx ] . param3 ;
uint8_t precision ;
for ( precision = 4 ; precision > 0 ; precision - - ) {
if ( value % 10 ) { break ; }
value / = 10 ;
}
2022-12-12 09:57:21 +00:00
char param3 [ FLOATSZ ] ;
2020-08-04 15:33:05 +01:00
dtostrfd ( ( ( double ) Adc [ idx ] . param3 ) / 10000 , precision , param3 ) ;
2023-04-13 08:04:17 +01:00
if ( ADC_CT_POWER = = Adc [ idx ] . type ) {
char param4 [ FLOATSZ ] ;
dtostrfd ( ( ( double ) Adc [ idx ] . param4 ) / 10000 , 3 , param4 ) ;
ResponseAppend_P ( PSTR ( " ,%s,%s " ) , param3 , param4 ) ;
} else {
ResponseAppend_P ( PSTR ( " ,%s,%d " ) , param3 , Adc [ idx ] . param4 ) ;
}
2020-08-03 17:21:34 +01:00
}
2020-08-04 15:33:05 +01:00
ResponseAppend_P ( PSTR ( " ]} " ) ) ;
2020-08-03 17:21:34 +01:00
}
}
/*********************************************************************************************\
* Interface
\ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2022-11-11 09:44:56 +00:00
bool Xsns02 ( uint32_t function ) {
2020-08-03 17:21:34 +01:00
bool result = false ;
switch ( function ) {
case FUNC_COMMAND :
result = DecodeCommand ( kAdcCommands , AdcCommand ) ;
break ;
2023-03-11 14:52:02 +00:00
case FUNC_SETUP_RING2 :
2020-08-03 17:21:34 +01:00
AdcInit ( ) ;
break ;
default :
2020-08-04 15:33:05 +01:00
if ( Adcs . present ) {
2020-08-03 17:21:34 +01:00
switch ( function ) {
# ifdef USE_RULES
case FUNC_EVERY_250_MSECOND :
AdcEvery250ms ( ) ;
break ;
# endif // USE_RULES
case FUNC_EVERY_SECOND :
AdcEverySecond ( ) ;
break ;
case FUNC_JSON_APPEND :
AdcShow ( 1 ) ;
break ;
# ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR :
AdcShow ( 0 ) ;
break ;
# endif // USE_WEBSERVER
}
}
}
return result ;
}
# endif // USE_ADC