The screen init (C++ bindings) was trouncing the PWM setup (Python) for the RGB LED.
This is because the backlight pin (12) and LED G pin (13) share the same PWM slice.
This does not seem to affect the screen backlight functionality.
* Add a new "connection_mode" argument to http_request. This can be TLS_MODE or TCP_MODE
* Fix a bug where assumptions about json parsing don't hold up
* Check for TCP_STATE_CLOSED and bail early from connect_to_server
This slightly reckless extension to ppwhttp adds support for wildcard routes, eg:
/get_led/<int:index>
Which will serve URLs in the form:
/get_led/10
/get_led/22
etc.
The wildcard includes <type:key>, attempting to match the behaviour of Flask.
Only type "int" is supported currently.
/get_led/<index> - would set data["index"] to a string
/get_led/<int:index> - would attempt to parse the URL part to an int, and would not serve eg: /get_led/hi
See plasma_ws2812_http.py for example usage.
Uses the correct? default Content-Type and encoding for HTTP.
Parses the Content-Type header *before* decoding the content body.
Handles JSON type gracefully.
Decodes the response body accoding to the encoding header.
This is a bit of a fudge, and was only tested against the Cheerlights API.
Detects JSON content type, parses out the content length and truncates the response body to length.
Should probably do this *before* decoding from utf-8.
Updates cheerlights.py API example to support XML, JSON and TEXT endpoints.
Creates a new ppwhttp library to hide the implementation detail of HTTP clients/servers from the examples.
Adds a new example - plasma_ws2812_http.py - showing how to expand rgb_http.py to use a WS2812 pixel strip.
Adds "secrets.py" and moves WIFI connection information there. ppwhttp will throw an error if it's missing.
A bytearray allocated in Python would point to uninitialised bytes, missing the SOF byte and brightness for APA102 pixels.
Add a blunt loop over the MicroPython buffer, calling "brightness" for each RGB element to ensure the SOF byte and brightness are initialized.
Includes "WS2812" and "APA102" modules, wrapping the libraries.
Uses a destructor to clean up the LED strip and resources when MicroPython is stopped/restarted.
The BME68X library is *linked* against the MicroPython bindings, rather than compiled directly in.
This saves specifing the list of target files twice.
Add a pimoroni.py module which includes Python code equivilents of the RGBLED and Button C++ drivers.
This is simpler than binding these drivers into MicroPython and much easier to maintain/extend.
As discussed on https://forums.pimoroni.com/t/pico-wireless-pack-fetching-data-from-web/17215/ the cheerlights.py example was stalling on the first HTTP request.
I have added a timeout in this case, so the code will stop waiting and retry after the 60second polling wait period. Users report this does the trick!
This change appends the list dir and project root dir to CMAKE_MODULE_PATH so that it doesn't need prepended to each "include" directive.
All .mk files have been deleted, since these are completely redundant.
This is the final piece of the puzzle.
Prior to this rather considerable change, Pimoroni breakouts were not de-init'ing I2C when they failed to init()
This change adds a __del__ method which cleans up the I2C instance attached to a MicroPython object.
Under the hood this calls i2c_deinit() and resets the associated pins to their default state.
This means that I2C is now cleaned up during a *soft* reset, so running a script with the wrong pins, seeing an error,
changing the pins and running it again will not result in subsequent I2C errors. Previously a hard reset was required.
To recreate on Breakout Garden run the following code:
```
from breakout_potentiometer import BreakoutPotentiometer
from pimoroni_i2c import PimoroniI2C
i2c = PimoroniI2C()
pot = BreakoutPotentiometer(i2c)
```
This will fail correctly with "Potentiometer breakout not found when initialising."
(The default pins are configured for Pico Explorer)
Now change that to the following and run again without hard-resetting:
```
from breakout_potentiometer import BreakoutPotentiometer
from pimoroni_i2c import PimoroniI2C
i2c = PimoroniI2C(4, 5)
pot = BreakoutPotentiometer(i2c)
```
This should now work, since the failed I2C instance was cleaned up.
Without this change, the second attempt would result in an inexplicable failure.
Since most? (many?) Pico users do not have a reset button, this trap requiring a hard-reset is pretty nasty and would likely have resulted in a support nightmare.
Whew.
Removes i2c_inst_t from constructors since it's ignored, and updated the Python bindings not to supply this argument. Instance is inferred from the supplied pins.
Removes all driver-specific SDA/SCL pin definitions and defaults.
Pin type is "uint" everywhere, but "PIN_UNUSED" is *int*_max for MicroPython compat. That's still a lot of pins!
Adds baudrate to the I2C class, and allows a driver (like Trackball) to check the baudrate is supported
This change adds a common I2C class, gathering various I2C functions into a single point of responsibility.
It's necessary for correctly managing the I2C bus pins and state across multiple devices.
* Add a common/pimoroni.hpp to list default pins for various add-ons
* Move the BG SPI Slot enum here for safe keeping
* Switch all GPIO pin references to "uint" to match Pico SDK and bring back PIN_UNUSED as UINT_MAX